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COMPOSITION OPERATORS ON THE
PRIVALOV SPACES OF THE UNIT BALL OF C"

SEI-ICHIRO UEKI

ABSTRACT. Let B and S be the unit ball and the unit sphere in
C". respectively. Let o be the normalized Lebesgue measure on S.
Define the Privalov spaces N¥(B) (1 < p < o) by

NP(B) = {f cH®) : s /S flog(1 + [ (rO))Pdo(C) < o }

where H(B) is the space of all holomorphic functions in B. Let ¢ be
a holomorphic self-map of B. Let u denote the pull-back measure
oo (") ', In this paper, we prove that the composition operator
C; is metrically bounded on N?(B) if and only if u(S(¢,6)) < Cé™
for some constant C and C is metrically compact on N¥(B) if and
only if #{(S(¢.8)) = o(6™) as § | O uniformly in ¢ € S. Our results
are an analogous results for MacCluer’s Carleson-measure criterion
for the boundedness or compactness of C, on the Hardy spaces

H?(B).

1. Introduction

Let n > 1 be a fixed integer. Let B = B,, and S = 0B denote the
unit ball and the unit sphere of the complex n-dimensional Euclidean
space C", respectively. Let v and o denote the normalized Lebesgue
measure on B and S. respectively. For each a € (—1,0¢), we set ¢y =
IC(n+a+1)/{T(n+ T (a+1)} and dvy = co(l — |2]?)*dv(z) (2 € B).
Note that v,(B) = 1. Let H(B) denote the space of all holomorphic
functions in B. For each p € (0,) and « € (—1,00), the Hardy space
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HP(B) and the weighted Bergman space AP(v,) are as usual defined by
w5 ={ 1< HE) 11l = swo [ I Pao <o0 ),

W) = { 1 € HB) < |1y, = /B P < o |,

where f.(z) = f(rz) for 0 <r <1, z € C" with rz € B. As in [12], the
Privalov spaces NP(B) (1 < p < o0) is defined by

Ni(B) = { £ € HE) -l = sup [ foalt +17,}7do < oo |

For each p € [1,00) and a € (—1,00), we define the weighted Bergman-
Privalov space (AN)P(v,) by

(ANP o) ={ € HB) + 11 appy = (g +|f|)}pd1/a<00}

The properties of the spaces N?(B) were studied in [10] and [12]. The
studies on the spaces (AN)P(v,) were in [7], [10] and [13].

If o is a holomorphic self-map of B, then ¢ induces a linear operator
C, on H(B) by means of the equation C,f = f o¢. This C,, is called
the composition operator induced by .

Recently, C, on NP(B;) have been studied by J. S. Choa and H. O.
Kim [1, 2]. And C, on (AN)!(v) (in the case n = 1 ) have been studied
by J. Xiao [13]. According to [2], we say that C,, is metrically bounded
on NP(B) if there exists a positive constant K such that ||C, f||y»(5) <
K| fllnep) for all f € NP(B). We call C, metrically compact if Cy, maps
every closed ball B = {f € NP(B) : ||fllnr(g) < R} into a relatively
compact set in NP(B). We also define the metrically boundedness and
the metrically compactness of C, on (AN)P(v,) in a similar way.

In 1985, B. D. MacCluer gave the following measure-theoretic charac-
terizatios of the holomorphic self-map ¢ that induce bounded or compact
composition operatars on H?(B) (0 < p < 0).

THEOREM 1.1 (B. D. MacCluer [5]). Let v be a holomorphic self-
map of B. Let j1 be the measure on B defined by o ¢ (p*)~}. Then for
0<p <

(a) C, is bounded on HP(B) if and only if there exists a positive
constant C' such that

n(8(¢,6)) <C6" (¢ € 5,6>0).
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(b) C, is compact on HP(B) if and only if

lim sup ———N(S(C’ 9))

=0.
310 ces on

Here S(,6) is the Carleson set in B.

As expected. an analogous results involving Carleson-measure condi-
tions hold for the spaces AP(v,) (0 < p < 00,—1 < a < o0). See [3]
pp.161 164.

The purpose of the present paper is to prove an analogous results
for the metrically boudedness and the metrically compactness of C,, on
the spaces NP(B) (1 < p < oc). The proofs of our main theorems
are essentially the same as those of MacCluer’s theorems. Moreover,
as a corollary of our main theorems we obtain that C, is metrically
compact (respectively metrically bounded) on NP(B) if and only if C,
is compact (respectively bounded) on H?(B). The last results is the
higher dimensional cases {n > 1) of the result by J. S. Choa and H. O.
Kim {1]. Also, we obtain the same results for the spaces (AN)P(v,) (1 <
p<oc,—1 <a <o)

2. Preliminaries

In order to prove our main results we will use some notations and
lemmas. For ¢ € S and § > 0, we introduce the Carleson set S(¢,6) in
B which is defined by

S(¢,6) = {z €B:|1-{(20|< 5}.

Moreover., we put B((,8) = S(¢,8) N B and S(¢,6) = S(¢,6)N S.
The proof of the following lemma is essentially the same as one of S.
C. Power’s theorem in [8].

LemMMA 2.1. Let 1 < p < oc. Suppose that p is a positive Borel
measure on B and there exists a constant C' > O such that

m(B(¢,0)) < Ca(S(¢,0)) (C€8,6>0).
Then there exists a constant K > 0 such that
 A1os 1+ £V die < KWy

for all f € NP(B).
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Proof. Fix f € NP(B) and t > 0. By the same argument as the proof

of Theorem in [8](pp.14-15), we can prove that there exists a constant
C’ > 0 such that

(2.1) u({z € B :log(1+|f(2)]) = 1))
< Clo({C e S :log(l+ MF(Q)) > 1),

where M f is the admissible mazimal function of f which is defined by

Mf(¢) = sup{|f(2)| : z € D(()},
and D(¢) is the set of all 2 € C" such that |1 — (2.¢)| < 1 — |z|? for

(es.
By (2.1) we have

[ ttos1+ 17Dy = | " uflog(1 4 1f) > e
B 0

0
< C"p/ of{log(l + Mf) > t}tP~'dt
0

o0 tY /t\P!
0

(2.2) =C'2P / {log(1 + M f)}*do.
S

Since log(1+¢€") : [-00,00) — [0, 00) is a nondecreasing convex function,
not identically 0 and f € N?(B), by Theorem 5.6.2 (b) in [9] there exists
a h € LP(0) such that

(2.3) log(1+[f(2)]) < PRl(2) (z € B),
(2.4) 1B/l ooy = [1F e (B)

where P[h] is the (invariant) Poisson integral of h. Moreover, since
1 <p<ooandh € LP(0), it follows from Theorem 5.4.10 in [9] that

(2.5) /S (MPJH]}do < Ap) /S IhPdo,
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for some constant A(p) > 0 depending only on p. By (2.2)~(2.5) we
obtain

[ ttos(a +150y7au < 2 [ frogla + M PP
B S
=’ /9{]\/[10g(1 + | f])}Pdo
< ' / (MPJh]}Pdo
S

< C2AD o )
This completes the proof. 0O

LEMMA 2.2 ([5] Lemma 1.3). Suppose that p is a positive Borel mea-
sure on S such that

1(5(¢,6)) <Co" (C€5,6>0),

for some constant C > 0. Then du = gdo, where g € L*°(S) with
llglt= < C', where C' is the product of C and a constant depending
only on the dimension n.

Proof. See [5]. p. 238, Lemma 1.3. O

LemMa 2.3. Let 1 < p < oc. Suppose that p is a positive Borel
measure on B such that

(2.6) n(S(¢,8)) £C8" (€ 5,6>0),

for some constant C > 0. Then there exists a constant K > 0 such that

(2.7) [ 41081+ 1 DY < KW,
for all f € NP(B). Here the notation f* denotes the function defined on
B by f* = f in B and f* = lim,y fr a.e. [0] on S.

Proof. (cf. [5], p.239) Put p; = p |p and pug = p |s. By (2.6) we have

(2.8) 11(B(¢,0)) < Co™,
(2.9) p2(5(¢,0)) < Co™.

On the other hand. it follows from Proposition 5.1.4 in [9] that ¢(S(¢. §))
~ 8", That is, there exist positive constants Ay and As such that

(2.10) A16" < 0(S(C,5)) < Apd™,
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for all ( € S and § > 0. By (2.8), (2.10) and Lemma 2.1, there exists a
constant K’ > 0 such that

(2.11) [ o5+ 170)Ydus < K1y

for all f € NP(B). And it follows from (2.9), (2.10) and Lemma 2.2 that
dpy = gdo for some g € L*(S). Thus using (2.11), we have that for
f e NP(B)

[ ttos(1+ 1£°1))7dn = / {log(1 + | £)YPdus + / {log(1 + | £ Yduz
B B S

< K ynie + ol [ Qos(1-+17° Yo

This proves (2.7). O

Remark. In Lemma 2.3, we see that the constant K of (2.7) can be
chosen to be the product of C' and a constant depending only on p and
the dimension n.

Let ¢, (2 € B) be the biholomorphic involution of B described in [9],
p.25. For z € Band 0 < r < 1, we set F(z,r) = p,(rB). According to
[9], p.29, §2.2.7,

(2.12) E(z,r) = {w ep v jw-Puf 1},

(rp)? r%p

w,z —r?)z —|z?
where P,w = (<Tz>>2’ ¢= 1(%(,# and p = 1i(rjlzzj|)2‘

LEMMA 2.4. For any z € B and 0 < r < 1, there exist ( € S and
8 > 0 with E(z,r) C B(¢,d). Furthermore, § ~ 1 — |2|2.

Proof. Since we easily prove this lemma in the case z = 0, we consider
only the case z # 0. Put ¢ = é'z € S. For w € E(z,7) we have

(L—rHlz| | (11|

,1_<waC>,: 1- 1—7'2[2[2 1_7,21212 _<w7€>)
—r?z]2 = (1 =)z —7r?)|z
(2.13) - - |1‘— TQ(I,IZIQ = (w66 (i —TQ?L‘QK '
By (2.12) we see that
1—[z%)r
|Pow —c¢| <rp= (1—_7!—2{’&')7»
(1= r)l2le

Paw={w.Q¢, ¢=T—a,z
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Hence, we obtain

1 — 2
fw.€)¢ = (1—-3%5 =[P =l
(1= [=)r
(2.14) = i

By (2.13) and (2.14) we have

-2z — (A =r?)la] | (1= e
1—72|z? 1—r2|z|?

(47—

1—r|z|

That is, w € B(C,(S) where § = M

1-7|z]

|1 - <UJC>| <

Furthermore, we obtain
1 1-—
1—|z|2: (1 + |2[)( T|Z|)5~
1+7
This completes the proof. O

LEMMA 2.5. Let -1 < o < o0. Suppose that u is a positive Borel
measure on B with

(2.15) u(B((,0)) < Crva(B((,0)) (€€ 5,6>0),

for some constant C' > 0. Then there is a positive constant K such that

(2.16) /gduéK/ 9da,
B B

for all nonnegative M-subharmonic function g on B.

Proof. Let z € B and % < r < 1 be fixed. By Lemma 2.4, there exist
¢ € § and 4§ > 0 such that

(2.17) E(z,7) C B((,8), §~1-—]z
Since v (B(¢,8)) ~ "1+ (see [6], Lemma 6.10), by (2.15) and (2.17)

we obtain
(2.18) p(E(z,r)) < C'(1— [z[)" e,

for some constant C' > 0. Now, let g be a nonnegative M-subharmonic
) g

function on B. By [11], p.33, (4.3) and (4.4), for z € B

(2.19) g(2) < 3" / g,
E(z,%)



118 Sei-ichiro Ueki

where dA(z) = (1 — |2|?)™""1dv(z) (¢ € B). Hence (2.19) and Fubini’s
theorem give

[ s <3 [ auts) [ Ly S
(220) =5 [ garw) [ xp.yw)da(z)

On the other hand, we can easily see that XE(Z,%)(w) < XE(w,r)(2). Thus
using (2.18) and (2.20), we have

[ o@auz) <37 [ gtw)irw) [ xpgpdutz)
=3 [ gwlu(Ew.r)dAw)
B

< 3nCI/Bg(w)(1 _ |w|2)n+l+a(_1jd%%))_m
= 3"C"/Bg(w)(l — |w|®)*dv(w).
This proves (2.16). a

Remark. By a careful computation, we see that the constant K of
(2.16) is taken to be the product of C and a positive constant depending
on ¢ and the dimension n.

3. Composition operators on N?(B)

In this section, let p be in (1, 00) and ¢ be a holomorphic self-map of
B. Let ¢* denote the radial limit of the mapping ¢ considered as a map
of § — B. We define a Borel measure i on B by u(E) = o(p* 1(E))
for all Borel sets E of B.

THEOREM 3.1. C,, is metrically bounded on NP(B) if and only if
there exists a positive constant C such that

n(8(¢,0)) < Co",
forall ( € S and § > 0.

Proof. Suppose that for some constant C > 0 we have u(S(¢,0)) <
Cé™. By Lemma 2.3, there exists a constant K > 0 such that

(3.1) /E{log(l + DY du < K fIiye ),
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for all f € NP(B). Let f be in NP(B). Since the ball algebra A(B) is
dense in NP(B), then there exists a sequence {f;} in A(B) such that
limj . [[fj = fllne(sy = 0. Noting that f; € A(B) implies that C,f; =
f; 0 € N(B) i (0 )" (6) = 5(+"(O) e o] C € 8, by (31) we
1ave

1650 ¢l = [ loBl1 + 1050 ) Do
= [ a1 +1(4; 0 7))o

(3:2) = [ {toa(1+ ;DY di < KNE o

for all j € N. Since lim; .« || f; — fllnr(p) = 0, it follows from (3.2) that
{fj o ¢} is a Cauchy sequence in N?(B). The completeness of NP(B)
gives fop € NP(B) and ||f o apl[i’vp(m < K||f||5’\,p(B). This proves that
C,, is metrically bounded on NP(B).

Conversely, suppose that C,, is metrically bounded on N?(B). Then
there exists a constant K > 0 such that

(3.3) 1Coflinve sy < Kl fllne(s)-
forall f € NP(B). For (e Sand 0 < § < 1, put w = (1 - 6)¢ € B.

And define .,
o 1= w2 3
jw(z) —-CXP{(l — <z,w))2} s

for = € B. Using the clementary inequality log(l + z) < log2 +
logta (z > 0). we can easily see that f, € A(B) and waﬂg,p(B) <
2P~ 1{(log 2)? + 1}. Hence by using the fact that (f, 0 @)* = fi, 0 p* a.e.
[0] on S and (3.3), we obtain

KP2P Y (log2)P + 1} > /g{log(l + | fw o ¢*]) }do
= [ tog1 + 7P

I+wpd
z/g{oglfl} y

o ol ]

?

wo e oo
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where Ret (v) = max{Re(v),0} for v € C.
On the other hand, by using the continuity of the function F(v) =

2n
Re(1+wv) » (v € C) at the origin in C, we can choose tg > 0 such that

(3.5) Re{1+M}_% >

1
1 — |w| 2’

for any z € S((,9d). By (3.5), for z € S(¢, tpd)
L—ful? VP _f1-pP )\ L f 1-fw ¥
Re{(l - <z,w>>2} - {u )2 } g Re{(l - <z,w>>}

()l )

(3.6) > (—;-— %x%>26%.
By (3.4) and (3.6), we have
KPP {(log 2)P + 1} > /E{ [R&{%}g] }pd,u(z)

Ct06 {[ { (z J;)Q}%] }pdu(z)
1

- /S(C,toé) 2pon dulz) = 2p5n 1(S(¢, 0d)).

n(S(C,108)) < KP2P~{(log2)? + 127",
for any ( € S and 0 < § < 1. This proves the desired conclusion. O

That is,

By an application Theorem 3.1 and Lemma 2.2, we obtain the fol-
lowing corollary.

COROLLARY 3.1. If C, is metrically bounded on NP(B), then ¢*
cannot carry a set of positive o-measure in S into a set of o-measure 0
in S.

Proof. We can prove this corollary in the same way that is used to
prove the corresponding one for the Hardy space HP(B). See [5], Corol-
lary 1.4. Ol

The next lemma is also an analogous result for corresponding one for
HP(B), due to B. D. MacCluer.
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LeMMA 3.1, Suppose that C, is metrically bounded on N?(B) and
let f € NP(B). Then (fop)* = f*o¢* a.e. [o] on S. Here the notation
[* Is used in the same sense of Lemma 2.3.

Proof. By Corollary 3.1 and the same argument as the proof of Lem-
ma 1.6 in [5], we can prove this lemma. D

The proof of Theorem 3.2 relies on the following characterization
of the metrically compactness of C, on NP(B) expressed in terms of
sequential convergence. By using some growth estimate satisfied by
functions in NP(B) (cf. [12] §3), we can prove the next lemma in the
same way that is used to prove the corresponding one for the spaces
HP(B) (See [4], Proposition 1.10). We omit the detail.

LenMA 3.2. C, is metrically compact on NP(B) if and only if for
every sequence {f;} in NP(B) which satisfies sup;ey || fillne(p) < o0
and converges to 0 uniformly on compact subsets of B, we have f; o ¢
converges to 0 in NP(B).

THEOREM 3.2. C,, is metrically compact on NP(B) if and only if p

satisfies
S(C, 0
(3.7) lim sup wS(E.9) =0.

Proof. Suppose that C, is metrically compact on NP(B). Assume,
to reach a contradiction, that u(S(¢,0)) # o(d™) as 6 | 0 uniformly in
¢ € S. Then there are {(;} C S, {6;} € (0,1) with §; | O (j — o0) and
€p > 0 such that

(3.8) 1(S8(¢5,65)) = €007,
for each j € N. Put a; = (1 — §;)(; and define

gl
fiz) =01~ |aj\)exp{_1_|—]l,—2}

for j € N and 2z € B. As in the proof of Theorem 3.1, we see that
f; € A(B) and Hfj”l;\/P(B) < 2P~ (log 2)P + 1}. Moreover, we can easily
see that f; converges to 0 uniformly on compact subsets of B. Hence, it
follows from Lemma 3.2 that f; o ¢ converges to 0 in NP(B).

On the other hand, the same argument in the second part of the
proof of Theorem 3.1 shows that there exists a to € (0, 1) such that for
z € 8(¢j.tgd;) and j €N

<3

(3.9) exp [Ro{(—l%}p} > exp(25j%)_1.
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Thus using (3.9), we have
1—|a;2 7
log™|f;(z =log+[ 1—|a; epre{ J } ]
l J )l ( ’ ]|> (1 _ (Z,CL]‘>>2

(3.10) 2 log+{6j exp(207 )‘1},

for z € S(¢j,t00;) and j € N. Using Fatou's lemma and (3.10), we
obtain that for each j € N

3.1) og™ {55 exp25]) | (11009

< o o1V
< [ tog(1 + £y
= [ Qe+ 1(f;0)"D}7do

AN

iy int | {log(1+|(f;  ¢)r])}Pdo

(3.12) = [ f; OSOHIJDVP(B)'

Since hm]_,oo “f] [¢] SOHNP(B) — 0 a,nd

3 (7 —+ 2 —1 b ]
lim 6] [log {6j exp(26;) }] =5

j—o0
it follows from (3.11) that
#(S(G, tad;)) _

il a7 =0
Using this, we have
PRLCICR D))
J~00 5;1
This contradicts (3.8). Therefore we obtain (3.7).
In order to prove the other direction, we assume that (3.7) holds. Fix
e > 0. By the same argument as the proof of Theorem 1.1 (ii) in [5],
we see that there exists a positive constant C7 depending only on the
dimension 7 such that

(3.13) F(S(C,8) < Cres™ (¢ € 5,6 >0),

where @ = IE\(l—do)E for some 0 < §g < 1.

=0.
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Now. suppose { f;} is a sequence in N?(B) which satisfies || f;]%;, B <
A (j € N) and converges to 0 uniformly on compact subsets of B. By
(3.7) and Theorem 3.1, we see that C, is metrically bounded on NP(B).
Hence, it follows from Lemma 3.1 that

(fiop)" = ffop" ae. [o]on S,
for each j € N. We obtain that for j € N

165 Wy = [ Lor(1 + 1060 ))}7do
= [ Qog(1 + 157 o "o
= [ tos(1+ 155D pd
(3.14) = [ o+ 1D+ [ flog(1+ 15D

1-du)

By (3.12) and Lemma 2.3, there exists a constant C5 > 0 depending
only on p and the dimension n such that

[ 014 1701747 < CoCrel By
(3.15) < MCyChe,

for each j € N. Since f; converges to 0 uniformly on compact subsets
on B, we have

(3.16) lim / {log(1 + | f;1)}Pdu = 0.
J—=< (1—(5(|)F

By (3.13), (3.14) and (3.15), we see that lim;j . ||fj © |[nr(p) = 0.

Hence, it follows from Lemma 3.2 that C, is metrically compact on

NP(B). |

As a corollary of Theorem 3.1 and 3.2, we obtain the following corol-
lary. This results is the higher dimensional cases of the result by J. S.
Choa and H. O. Kim [1].

COROLLARY 3.2. (a) C, is bounded on H*(B) if and only if C,, is
metrically bounded on NP(B).
(b) C, is compact on H?(B) if and only if C, is metrically compact
on NP(B).
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4. Composition operators on (AN)P(v,)

In this section, let 1 < p < o0 and —1 < @ < c0. Let ¢ be a holo-
morphic self-map of B. We define a Borel measure u(E) = v, (0™ (E))
for all Borel sets E of B.

THEOREM 4.1. C, is metrically bounded on (AN)P(v,) if and only
if there exists a positive constant C such that

(4.1) w(B(¢,8)) < Comrite,
forall ( € S and § > 0.

Proof. We first. prove that (4.1) is a sufficient condition for C, is
metrically bounded on (AN)P(v,). By (4.1) and the fact v, (B((,6)) ~
snt1ta there exists a constant C’ > 0 such that

(4.2) w(B(¢.9)) < C'va(B(¢,9)),

for all ( € S and 6 > 0.
Fix f € (AN)P(vy). Since {log(l + |f|)}? is a nonnegative M-
subharmonic function on B, it follows from (4.2) and Lemma 2.5 that

(4.3) /B {log(1 + | £)}Pdp < K /B {log(1 + [£1)}Pdva,

for some constant K > 0 depending on C’, a and the dimension n. (4.3)
proves that C,, is metrically bounded on (AN)P(vy).

For the other direction, we pick { € S and 0 < & < 1. Take the
function

1 _ |w|2 n+11)+a )
<1—<z,w>)2} (=€ B),

where w = (1—6)¢ € B. We can easily see that f,, € A(B) C (AN)P(v4).
Moreover, by Proposition 1.4.10 in [9] we see that there exists a positive
constant C such that

(1 — |wlz)n+1+a(1 _ lzlg)a
/B 1 — (z,w)[2(r+1+a) dv(z)

< C(l N |w|2)n+1+a(1 - ’,w|2)—(n+1+a) - C.

ful2) = exp{
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Hence. we obtain that

(49 ol sy
= [ fo1+ 1),
<ot [{log 2p+ [ {10g+!fw|}pdva]
B

2\yn+1+o 2\a
p—1 p p—1 . (1—|U)l ) (lﬁlz‘ )
S 2 g2} 27 e /B 1 — (z, w)|2(n+1+a)

dv(z)

(4.5) <27 H{log 2}? + ¢ C].

By (4.4) and the completely analogous argument that is used to prove
Theorem 3.1, we can also prove that (4.1) is a necessary condition for
C,, is metrically bounded on (AN)P(v,). We omit the detail. O

For the metrically compactness of C, on (AN)?(v,), an analogous
result of Lemnna 3.2 holds.

LeEMMA 4.1, C,, is metrically compact on (AN )P(v,) if and only if for
every sequence {f;} in (AN)P(v,) which satisfies supjen || fll(anyp(va) <
oc and converges to 0 uniformly on compact subsets of B, we have f;op
converges to 0 in (AN)P(vq).

Proof. By using the growth estimate satisfied by functions in (AN)? (va)
([7], Lemma 1) and modifying the proof of Proposition 2.3 in [13], this
lemma can be proven. U

THEOREM 4.2. C,, is metrically compact on (AN)P(vy) if and only if
W satisfies

. o B(G0))
(46) lmoup R =0

Proof. The proof is essentially the same as one of Theorem 3.2. For
sufficiency, we choose test functions

ntl+ta

} ’ (z € B, jeN),

fi(2) = (1 |aj|>exp{

where we choose a; in the same way that is used to prove Theorem
3.2. As in the proof of Theorem 4.1, we see that f; € A(B) and
HfjH?AN),,(Va) < 2 Y(log 2)P + ¢,C} for some constant C > 0. By
Lemma 4.1 and the same argument that is used to prove Theorem 3.2,
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we see that (4.5) is a sufficient condition for the metrically compactness
of C, on (AN)P(vy).

Now, we prove that (4.5) is a necessary condition for the metrically
compactness of C, on (AN)P(v,). Weset D((,0) ={z € B:1-6<
|z|. z/|z] € S(¢,0)}. We easily see that
(4.7) B(¢,6/2) C D(¢,0) C B((,26),

for ¢ € S and § > 0. By (4.5) and (4.6), we have p(D(¢,6)) /6" H+e — 0
as 6 | 0 uniformly in ¢ € S. Hence. as in the proof of Theorem 1.1 (ii)
in [5], we can prove that there exists a constant C; > 0 depending only
on the dimension n such that

(4.8) H(B(C,6)) < Cred™tre (ce S, 6> 0),
where £ > 0 be fixed and = g IB\(1—6(,)§ for some 0 < §p < 1.
Suppose that {f;} is a sequence in (AN)P(v,) which satisfies
”fj”?AN)p(,,a) <M (J € N)

and converges to 0 uniformly on compact subsets of B. For each j € N
we have

155 © @l anyp(wa) = /B {log(1 + |5 0 ¢])}dva
- /B {log(1 + |£;)}7du
(4.9) — / {log(1 + | ;)17 dfi + / (log(1 + | £))}7du.
B (

1-60)B

By (4.7) and Lemma 2.5, there exists a positive constant Cs depending
only on « and n such that

@) [ 1o+ 1501 < CoCrel i iy

for each j € N. Moreover, it follows from f; converges to uniformly 0 on
(1 - 50)§ that
(4.11) lim [ {log(1+ ;) Pdu =o.

j=%0 J(1-5,)B

By (4.8), (4.9) and (4.10), we obtain that f; o ¢ converges to 0 in
(AN)P(v). By Lemma 4.1, we see that C, is metrically compact on
(AN)P(vq). O

As a corollary of Theorem 4.1 and 4.2, we obtain the following results.
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COROLLARY 4.1. (a) C, is bounded on A%(v,) if and only if C,, is
metrically bounded on (AN)P(v,).

(b) C, is compact on A*(v,) if and only if Cy, is metrically compact

(1]
(2l

on (AN)YP(vy,).
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