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A FAST FACTORIZATION ALGORITHM
FOR A CONFLUENT CAUCHY MATRIX

KyuNngsupr KiMm

ABSTRACT. This paper presents a fast factorization algorithm for
confluent Cauchy-like matrices. The algorithm consists of two parts.
First, a confluent Cauchy-like matrix is transformed into a Cauchy-
like matrix available to pivot without changing its structure. Sec-
ond, a fast partial pivoting factorization algorithm for the Cauchy-
like matrix is presented. A new displacement structure cannot pos-
sibly generate all entries of a transformed matrix, which is called by
“partially reconstructible”. This paper also discusses how the pro-
posed factorization algorithm can be generally applied to partially
reconstructive matrices.

1. Introduction

The generalized Nevanlinna-Pick interpolation problem has been in-
vestigated, which can be encountered in several applications including
model reduction, sensitivity minimization and robust stabilization [2, 4].
Specially, we note factorization algorithms for the corresponding Pick
matrix. Several fast algorithms for the special structure of the Pick ma-
trix like a Toeplitz-like and Cauchy-like matrix with only O(n?) arith-
wetic operation have been introduced [6, 8, 4, 7, 11]. However, O(n3)
arithmetic operations are needed to compute the triangular LU factor-
ization for a general dense matrix [6].

For an n x n Toeplitz matrix R, the number of operations of the tri-
angular factorization R = LDL* can be reduced to O(n?) from O(n?)
if the structural property is used, i.e., Schur algorithm[6, 8, 4, 7, 11].
Here, L is a lower triangular matrix, D is a diagonal matrix, and A* is
the complex conjugate transposition of A. A matrix is said to have the
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displacement structure introduced in [9] if it obeys the general displace-
ment equation of the form

(1) R- FRF* =GJG*, FeC™™ @GeC e,

where F' is a lower triangular matrix, and a signature matrix J is defined
such that the diagonal entries of J are 1 or —1, otherwise zero. Here, G
is called a generator. A triple pair, (¥, G, J), is called a generator of R.
The rank of G is called the displacement rank of R. Toeplitz, Cauchy
and Confluent Cauchy matrices have displacement structures (1) with
special generators (F, G, J) [7, 9, 10]. The computational burden can be
reduced to O(n?), if R has the lower displacement rank than n as the
Toeplitz or Cauchy matrix {7, 9], while the triangular factorization for a
dense matrix can be solved by the Gauss elimination method [6], which
requires O(n?) multiplication operations.

It is known that Schur algorithm often produces very inaccurate re-
sults for indefinite matrices because of the recursion nature of the algo-
rithm, which sequentially processes all leading submatrices. It can break
down if one of leading submatrices is singular or nearly singular. In addi-
tion, even if one encounters a nonsingular submatrix, near-break-downs
occur for ill-conditioned submatrices. In order to avoid the singular
problem, pivoting techniques are used [6]. But, pivoting matrix with
a special displacement structure, the desired displacement structure to
implement a fast algorithm can destroyed. Therefore, the merit of fast
algorithm is reduced.

From this motivation, this paper presents a fast pivoting factorization
algorithm for a confluent Cauchy-like matrix. A confluent Cauchy-like
matrix is transformed into a Cauchy-like matrix via a matrix with a
circulant displacement structure. We consider several problems that
appear when Schur algorithms are applied to the derived Cauchy-like
matrix.

The paper is structured as follows. In Section 2, confluent Cauchy-like
matrices are introduced. Section 3 shows how a confluent Cauchy-like
matrix can be transformed into a Cauchy-like matrix. Section 4 discusses
how a pivoting generalized Schur algorithm is applied to Cauchy-like
matrices. Numerical experiment results are presented in section 5, and
a conclusion follows.

2. Generalized Nevanlinna-pick interpolation problems
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Let us review the Nevanlinna-pick interpolation problems. It is as-
sumed that distinct points {¢;} in open unit disk D for 1 < ¢ < p exist. A
generalized Nevanlinna-pick interpolation determines a rational function
K (z) satisfying the following conditions

A. K(z) is analytic inside open unit disk,

B. K/(z) is passive on the boundary 0D of unit disk, i.e., sup_ ¢y |K(2)]

< 1.

C. K(z) satisfies tangential confluent interpolation conditions such
that for k¥ = 1.2,....,p and j = 1,2,...,my, a pair (zx;, Yk,;)
satisfies the following relation:

. K7 '(G) .
TE-nt

These interpolation problems can be solved via a 2 x 2 rational matrix
function. W(z). with a state-space representation [2] as follows:

Wii(z) Wia(2) 1 e 1 e
2 Wi(z) = =1+GEI-F)"RTG".
2) (2) [ng(z) Waa(2) G )

, . . . . A O
We note that R is a certain structured matrix. Set diag(A,B) = O B
and J = diag(1.—1). A Pick matrix R in (2) satisfies a displacement
structure (1) (see [10]) where F', and G are defined by

1 Wil
‘ ¥ 1 T1,m Yi,m
3 F = dia T ., G= Jmi m |
¥ BlJa e Te,) T21 Y21
—xp»mp yp,mp_

where Zf: Ly = n and an my x my lower triangular Jordan block J¢,
is defined such that the diagonal entries of J¢, are (g, (4, — 1) entries
for 2 < i < my are 1. and otherwise zero. A Pick matrix R satisfying
(1) with (3) is called a confluent Cauchy-like matriz. All solutions K (z)
for the interpolation problem are parameterized as follows

K(2) = [Wi1(2)U(2) + Wiz(2)][Wa1 (2)U (2) + Wag] ™!

where U(z) is an arbitrary rational function satisfying the conditions A
and B. However. in order to solve (2), one needs to compute R™'G. The
arithmetic complexity of the matrix multiplication R7'G is O(n?®). A
Pick matrix R is a Toeplitz-like matrix if F is a single Jordan block with
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(1 = 0, and a Pick matrix R is a Cauchy-like matrix if F' is a diagonal
matrix with my = 1 for 1 < k < p. However, we are more interested in
the case where my >> 1. Assume that a Pick matrix R not is positive
definite. If the condition A is relaxed, then R is not positive definite.
Then due to the roundoff error, the Schur algorithm can give inaccurate
results [8].

The equation in (1) is called a discrete time Lyapunov equation or
a Stein equation [2]. If F is a lower triangular matrix with a lower
bandwidth 2, then all entries of R can be computed within the order of
O(n?). The pseudocode solving the stein equation is given as follows:

ALGORITHM 2.1 (Solving Stein equation). Assume that an nxn lower
triangular matrix F' satisfies a lower bandwidth of 2 and 1 — f;; f7 #0
for 1 <4,j < n where f;; is an (¢, ) entry of F. Compute R with (11) as
follows:

Input: A generator (G, F, J) of R.
Output: R
Procedure:

C=GJG*

R(:v 1) = (I - fikl)_l ’ C(:a 1)

fork=2:n

R(:, k)= —F - f5)"YC(. k) + F-R(:,k — 1)}
end

Let us count the arithmetic operation order of Algorithm 2.1. Since
I—F- fy foreach k =1,...,n and F are nonsingular and lower trian-
gular matrices having a lower bandwidth 2, for a given «, the operation
orders of (I — F- fix)~! -z and F -z are O(2n) (see, e.g. [6]). The total
arithmetic operation order of Algorithm 1 is approximately 2n2.

3. A transformation into Cauchy-like matrices

Let us consider some properties of a circulant matrix to give a moti-
vation. A circulant matrix is defined by Circ(r) for any

r= [7'6 ryoe-- r;_l]*
such that
TO  Tpei ot Tl
LMot T2
4) Cire(r) =

Tn—1 Th—2 -+ To
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For any circulant matrix Circ(r), a diagonal matrix D is derived by

(5) D = FCire(r)F* with F — %(wkl);;;:lo,
for a given w = en with i = v—1, and a circulant matrix Circ(r)
(see [8] [5] and references therein). F is called a Fast Fourier Transform
(FFT) matrix, which means including a fast algorithm and a discrete
Fourier transform. A solution R of (1) is called as a circulant displace-
ment structure matrix if F' is a circulant matrix F = Circ(r).

Now, consider a generalized Cauchy matrix. A generalized Cauchy
matrix R is of the form

c:Je*
ch]

(6) R= |k

with an « X a signature matrix J. A matrix R is denoted by a Cauchy-
like matriz if R satisfies a displacement structure such that

(7) R - DRD* = GJG"

with D = diag(dy,ds,...,dn), and G = [¢f --- ¢]". Cauchy-like
matrices have some good properties that can derive a fast algorithm with
pivoting. The key motivation point is that a Cauchy-like matrix retains
the same displacement structure as (7) after symmetry permutations for
the columns and rows are performed, i.e., it allows pivoting technique
to be incorporated into a Schur algorithm for the factorization of a
generalized Cauchy-like matrices [8].

Initially, a single Jordan block is considered as a simple case. Suppose
that F is a single n x n Jordan block F' = J; with |([ # 1. For the case,
it does not permit a pivoting technique since the necessary assumption
that F is a lower triangular matrix is destroyed after pivoting. The next
theorem shows how a displacement structure of a confluent Cauchy-like
matrix with a Jordan block F can be transformed into a new circulant
displacement structure.

] (Ci c Clxa)
I<ij<n

THEOREM 3.1. Assume that a Hermitian matrix R € C**" is a solu-
tion of the displacement equation

(8) R - J:RT} = GIG*

where J; is an n x n Jordan block for a given ¢ with |(| # 1, a generator
G € C™*¢ has a low rank, J is an o x «a signature matrix and C¢ is
defined by

(9) C¢ = Circ(r)
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with a given r = [1 G | 0]* € C". Then R satisfies a new
displacement equation
L J 0]
(10) R — CcRCZ = GlJlGT, J1 = 1 0O ,
0 0 -1

where G, = [G Y1 yQ] is a matrix with less rank than o + 2. Here,
y; is a linear combination of {E1,y} where y = J¢RE,, r;; is an (i, J)
entry of R and E; is an 1 standard basis.

Proof. The circulant matrix C¢ is rewritten by C¢ = J.+ E1 E};. This
term is inserted into the left side of (10). From (8), we have

R— C(RC} = R — JeRT? — (ByELRJIE + JeRELES + ron ErEY)
(11) = GJG* — (E1y* + yE] + ranE1EY).

Since R is a Hermitian matrix, the diagonal entries of R are real numbers.
Hence, a function sign(z) can be defined such that sign(z) =1 forz > 0
and sign(z) = -1 for £ < 0. The last three terms in (11) can be
rewritten as

. . N Sign(rrn){(TE1 — £)(7E) — £)* — 24"} if rpyp, £ 0
Evy"+yEy tron EL By = {(E1+y) (Extv)* _ (BEi—w) (B1=y)* otherwise.

v2oooV2 V2o V2

where 7 = \/|rnn|. Therefore, a new generator G can be written by

G (tEy-Y) if rpp # 0 and sign(rp,) > 0

(12) Gy =!G 4 (rEy—-1Y) if 7y # 0 and sign(r,,) <0
G %-;—y) (EITJ;ZQ)] otherwise.
Thus, the rank of a generator G; derived from (12) is shown to be
less than a + 2. ]

The above theorem shows how a displacement structure of a simple
confluent Cauchy-like matrix with a single Jordan block, F = J¢, can
be transformed into a matrix with a circulant displacement structure. A
generalized version will be developed for the case where a Jordan blocks
matrix F' is defined by (3).

THEOREM 3.2. Assume that a matrix R satisfies the displacement
structure (1) where F' = diag(J,, ..., J,), G is an n X a matrix, and J
is an a X a signature matrix. The initial values are defined by Fy = F,



A fast factorization algorithm 7

Go = G, Jg = J and ag = «. Assume that for some k > 0, a matrix R
satisfies a displacement structure such that

(13) R — FyRF}; = Gy i G},
where Fy, is defined by
(14) Fk:dlag(cﬁa ’CCk’jCk-;-l"” 7\741,)

for circulant matrices {C¢,} and Jordan block matrices {J,}, Gi €
Cn*k js a generator, and Jy, Is a signature matrix. Define a submatrix
dimension by pp = Zf m; . Then Fy, Gi, Ji and oy can satisfy the
following recurrence relations:

(15) Fk+1 = Fk + E#k+1 . E;k+1
(16) Grvr =[Gk Uk1 Uk2]
(17) Jk'l'l :dlag{‘]kala_l}
(18) Qg41 = op + 2,

where yy 1 and yi 2 are proper linear combinations of {y, E,, 41} wheny
is defined by y = Fy-R- E and Ej is a j standard basis. Moreover,
rank(Gy) < rank(G) + 2k.

Hik41

Proof. The equation Fiy1 = Fi + Ep 41 - Ej | in (15) is directly

derived by the definition of Fy. Insert Fiy; (15) into R — Fpr1 RFY, ;.
R~ Fyep1RFy = GpJGr ~ Epys1y — y rtl — Thgniis Bug By

can be derived. Since the derivation of Gy is similar to G1 (12) in
Theorem 3.1, the relation of the generator (16) and the relation of
the signature matrix (17) can be derived directly. Since rank(Ggy1) <
rank(Gy) + 2, the last statement is trivial by the induction. O

Using Theorem 3.2 recursively until & = p, R satisfies a displacement
structure where the diagonal sub-blocks of a matrix F, (i.e. for k =
p in (15)) are circulant matrices C¢,. R has a generalized circulant
displacement structure, if all the diagonal sub-blocks of F' are circulant
matrices and the others are zero, i.e., F = F, in (15).

Next, we show how to transform a generalized circulant displacement
structured matrix into a Cauchy-like matrix. Note that FCirc(r)F™ is
a diagonal matrix where F is an FFT matrix. The transformation from
more general confluent Cauchy-like matrices into Cauchy-like matrices
is summarized in the next theorem.
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THEOREM 3.3. Assume that a confluent Cauchy-like matrix R is a
solution of the displacement equation where ' = diag(J;,,...,J¢,), G
is an n X o matrix, J is an « X « signature matrix and all (’s are
ICk] # 1. Then a confluent Cauchy-like matrix R can be transformed
into a Cauchy-like matrix R such that R = FRF* is a solution of the
displacement equation

(19) R—DRD* = GJ,G*, G=FG,

where F is defined by F = diag{F1,...,Fp}, Fr’s are my X my, dimen-
sional FFT matrices, a diagonal matrix D is defined by D = FF,F™.
Gp, Fp, and J, are defined in Theorem 3.2.

Proof. By using Theorem 3.2, a new displacement structure with a
block circulant matrix Fj, can be defined in (13) when k = p . Multiply
by 7* and F on the left and right, respectively, of R— F,RF) = G,JGJ,.
It can be see that FRF* — FE,F*FRF*FF;F* = FGpJGF* since
F*F is a identity matrix. Set R = FRF*, D = FF,F*. From this, it is
relatively straightforward to show that a solution R of the displacement
equation R — DRD* = éJ,,C?* (19) is a Cauchy-like matrix since D =
FF,F* is a diagonal matrix. O

4. A factorization algorithm for a confluent Cauchy matrix

This section proposes a fast partial pivoting factorization for a Her-
mitian confluent Cauchy-like matrix R. It was shown how a confluent
Cauchy-like matrix is transformed into a Cauchy-like matrix. A fast
factorization algorithm for the Cauchy-like matrix using the generalized
Schur algorithm is introduced in [8]. This section discusses how to apply
the generalized Schur algorithm to a Cauchy-like matrix derived from a
confluent Cauchy-like matrix.

If det(F' —I) = 0, then a classical Schur algorithm can break down [6,
11]. We consider a generalized Schur algorithm, which is different from
a classical Schur algorithm of the simple form. The following theorem
from [1, 8] is a basis of our new generalized Schur algorithm.

THEOREM 4.1 (Generalized Schur algorithm). Let F' be a block lower
triangular matrix and R be a Hermitian solution of the equation (1) for
an n X o matrix G and a signature matrix J. Choose 7 such that
det(yI — F) # 0 and |y| = 1. Let the matrices be partitioned by
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Fip. 0 Ry1 Ry G
20 F=|t1t V| R= . G= .
(20) [521 Fy ] [321 322] [Gzl]

If the submatrix Ry, is invertible, then the Schur complement Ry of R

(21) Ry = Ry — Ro1 Ry Rao
satisfies a displacement structure as follows:
(22) Ry — Fyo R\ F3, = G1JGT
(23) G1 = Ga — (v — Fa2)Ra Ry — Fo1)(vI — F11)"'Gus.
Proof. Refer to Theorem 4.3 in {1} or Lemma 4.1 in {8]. O

The assumption det(yI — F) # 0 is needed in order to prevent a break-
down of the algorithm. From Theorem 4.1, it can be seen that a new
generator (F1.Gy.J) of the Schur complement R; of R can be computed
from the generator (F,G.J) of R, Ri1, Rp; and Ry;.

We consider what happens when a confluent Cauchy-like matrix is
transformed into a Cauchy-like matrix. For a given F' = J; € Cnxn
and a given n x n FFT matrix F, a k diagonal entry {di} of D =
FCF* is a root of the characteristic polynomial P(z) = (z — ()" — 1,
which is expressed by dp = ¢ + w* for a given w = e, In the
result, the diagonal matrix D defined in (19) can be computed without
computational complexity.

In the result of Theorem 4.1, some block submatrixces such as R
and Rg; in (20) should be computed from G. Assume that an (i, j) entry
7ij of R is reconstructible, i.e., 1 — did; # 0 and (ni5] = GJ,,G*. Then
7i; can be computed by
i

for a j-th diagonal entry d; of D with 1 — d;d} # 0. In the case where
did; — 1 =0 for some ¢, j, an (4, j) entry 7y of R in (19) is not uniquely
determined from the data of G. Jp, and D. It is referred to as the
partially reconstructible matrix introduced in [8]. Therefore, a unique
solution R cannot be determined by (24). The next stage is to determine
how to construct an entry 7;; of R when f;; is not reconstructible. An
unreconstructible set R from D, G and Jp can be defined by

(25) R = {(#1;,.)|d; - d5 — 1 = 0}.
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Because of the assumption [(x| # 1, a Pick matrix R that is a solution
of (1) with the condition (3) is reconstructive. Therefore the element
(i 4.4,7)) € R can be computed by 7 ; = (FRF*); ;. While 7;; cannot
be obtained from G, the entries of the Cauchy-like matrix derived from
a confluent Cauchy-like matrix can be computed. For each recursion
step, elements of R must be updated by explicitly computing the Schur
complement as (21), since they cannot be obtained from the generator.
However, the computation load increases, if the number of R increases.

The next stage considers a pivoting problem in the generalized Schur
algorithm. A single step of the standard Cholesky factorization is valid
if the upper left block Ry of R is invertible. Now, to enhance the
accuracy of the computations, the Gaussian elimination is proceeded by
symmetric row and column permutations such that

(26) R — PRP*

where P is a permutation matrix. If R has a Cauchy-like matrix as
in (21), then a new updated matrix R has a displacement structure
matrix with a generator (PDP*, PG, Jp). A Cauchy-like scheme acts on
R after permutations, while for general displacement structure matrices
the result of the permutation destroys the structure (e.g., the assumption
that F' is a lower triangular matrix cannot be satisfied). The Bunch-
Kaufman algorithm (3, 6] is often used for symmetry indefinite matrices.
A Bunch-Kaufman algorithm can be modified for a Cauchy-like matrix.

ALGORITHM 4.2. Let R be a solution of the displacement structure
equation in (19) and R be an unreconstructible set of R defined as (25).
Input: A generator (D, G, Jp) and an unreconstructible set R of R.
Output: (D, G, Jp), a permutation matrix P, m, and R.

Procedure:
- Compute the first column R(:,1) of R from G for reconstructible
case or take them from R

Y= 1+g/ﬁ
€= lT‘At’ll = max{]fg’l, ey |7A‘n’1|}
ife#0
if |'f‘1’1| S Ve
-m=1P=1
else

. Compute the ¢-th column R(:,t) of R from G for
reconstructible case or take them from R

0 = l'fp,tl = max{]ful, e |72t—1,t" |7‘Af+1’t|, ey I'Fn,tl}
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if Ulfl.ll S UE“Z
-m=1P=1
else if |/4| <vo
- m =1 and choose P such that (P - R P*)1 =7
else
- m =2 and choose P such that (P - R- P*)a1 = Tt
end
end
end
return G = PG: D = PDP*; Reordering R

Since the Bunch-Kaufman algorithm requires knowledge of the entries
of one more column of R for cach step, this pivoting technique gives the
Schur algorithm the additional cost of O(2an). A pseudocode of a fast
partial pivoting factorization algorithm for Confluent Cauchy matrices
is presented in the next algorithm. The algorithm is factorized in the
following form:

(27) PFRF*P* = LDL*

where F is defined as Theorem 3.3, P is a permutate matrix, L is a
lower triangular matrix and D is at most a triple diagonal matrix.

ALGORITHM 4.3. A factorization algorithms for Confluent Cauchy:

e Input: A generator (G, F, J) defined as Theorem 3.3.
e Qutput: PFRF*P* = LDL*.
e Procedure:
1. Compute a generator (F,, Gp. Jp).
— Compute R(:, gx) using Algorithm 2.1.
— Compute a new generator (), G, Jp) using Theorem 3.2.
2. Cowmpute a new generator (D, G, Jp) and an unreconstructible
set R.
— Compute a new generator (D, G, Jp) using Theorem 3.3.
— Compute an unreconstructible set R such that
IA'Z',J‘ = (fR]?*),J for 1 - dld;< = 0.
3. Perform Theorem 4.1.
Sub-procedure:
- L(:.:)=0: D(:,:) = O;
st =1;
while (¢t < n)
- Using Algorithm 4.2, compute R, P, m and (D, é’) —
(PDP*. PG)
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. Compute R(:,1: m) from a generator (D, G, Jp)
. {f‘ i = T if #; ; is reconstructible
ij = t

Take 7 ; from R otherwise.

cL{ct:m,ct:ct+m—1) = R(:,1:m)RQ :m,1:m)"
D(ct:ct+m—1,ct:ct+m—1)=R(1:m,1:m)
- Compute a generator (D, é) of Schur complement by
Theorem 4.1
- Update the elements of R by computing directly
Schur complement
-ct=ct+m;
end

Let us analyze the complexity of computing a new algorithm. At the
step (1) in Algorithm 4.3, a Stein equation is solved using Algorithm 2.1.
Its operation order is approximately 2n?. At step (2), the entries of D are
directly computed with an n order and depending on FFT multiplication
the computation order of G is an log(n). Step (3) is O(apn?). It can be
seen that the total multiplication order of Algorithm 4.3 is proportional
to n? if R = 0. However, there are two facts that can result in an
increase of the computation load. First, when p increase, the proposed
algorithm is not efficient since &, = 2p+ . Therefore, p < n is claimed.
Second, if the element number £ of R increases, then the computational
complexity increases proportionally with a rate &n.

5. Numerical experiments

The proposed algorithm was applied to factorizing some examples to
clarify its benefits. A large amount of computer experiments were per-
formed with the algorithm designed in this paper to compare it to other
available algorithms. All the algorithms were implemented in double pre-
cision, for which the unit round-off was 2756 = 1.4 x 10717, MATLAB
was used to implement the proposed algorithm and the other available
algorithms. The following abbreviations used in these examples are de-
scribed in Table 1. Table 1 provides an approximation for computational
complexities. Computational errors were evaluated by the component-
wise matrix residual error

RE = rP@;{ (LDL* — PFTFP"); |
(3]
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TABLE 1. The arithmetic complexity for algorithms

Abbreviation Full Name The Complexity
R Solving R — FREF* = GJG* 0(2n?)
G=FG, Fast Fourier Transform of G, O(nlog(n))
GE Gaussian Elimination [6] O(n?)
GSA Generalized Schur Algorithm [12] O(n?)
PSA Proposed Schur algorithm O(n?) B

to conform the accuracy of a new factorization algorithm. Example
5.1 provides an example for an irregular matrix that needs pivoting.
In Example 5.2, the numerical complexity and accuracy of the three
algorithms (GE, PSA and GSA) are compared for a simple Confluent
Cauchy-like matrix. Furthermore, in Example 5.3, the numerical com-
plexity and the accuracy are compared for a general Confluent Cauchy-
like matrix.

ExaMPLE 5.1 (The irregular case). A simple structured matrix sat-
isfying (3) is given such that

10 0 1 -1
F=1]1 101 0|, G=1{1 90
g 1 0.1 1 90

It can be scen that the (1.1) entry of R is zero. The eigenvalues of
R are {1.5932, 0.6096, -1.1737}. The condition number of R is 2.6134.
Therefore, this case is irregular and indefinite. It can not be factorized
without pivoting. GE and PSA can be applied but GSA cannot.

EXAMPLE 5.2 (The simple case F' = J¢). A simple confluent Cauchy-
like matrix satisfying the following condition such that R is a solution
of a displacement equation (3) where F' is a simple Jordan block defined
by F'= J; with ¢ = 0.04, and a generator matrix G that satisfies

1 0.9999
-1 0
G =
(__1>n~1 0

After a transformation of a confluent Cauchy-like matrix into a Cauchy-
like matrix, the rank of a new generator is 4. Let n be a dimension of
R. PSA. GSA and GE were exercised from n = 58 to n = 166 with step
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Time(msec)

60 80 100 120 140 160
Marix Order

(a) The orders of the multiplication

10°
10
10
10°
107
10°®
109
10-10
10"
1072
1018
10

Residual Error

60 80 100 120 140 160
Marix Order

(b) Residual errors

FI1GURE 1. Comparison of PSA, GSA, and GE for simple
confluent Cauchy-like matrices

size 6. Figure 1 shows that the PSA is faster than the GE and more
accurate than the GSA.

EXAMPLE 5.3 (The general case F' = diag{J;,,Jc,}). A confluent
Cauchy-like matrix R is a solution of a displacement equation (3) where
F is F = diag(J¢,, J¢,) with ¢; = 0.04 and (2 = 0.05, and a generator
matrix G that satisfies

1 0.9999
-1 0
G =
(o

After transforming a confluent Cauchy-like matrix into a Cauchy-like
matrix, the dimension of a new generator is 6. Let n be a dimension of
R. PSA. GSA and GE were exercised from n = 58 to n = 166 with a
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Time(msec)

a |

10"
60 80 100 120 140 160

Marix Order

(a) The orders of the multiplication

........

Residual Error

60 80 100 120 140 160
Marix Order

(b) Residual errors

FiGure 2. Comparison of PSA, GSA, and GE for gen-
eral confluent Cauchy-like matrices

step size of 6. Figure 2 shows that the PSA is faster than the GE and
more accurate than the GSA.

In results, the proposed algorithm is faster than the GE. In accuracy,
the proposed algorithin is better than the GSA without pivoting even
though the proposed algorithm can be worse than the GE, which is not
a fast algorithm.

6. Conclusion

This paper proposed a transformation of a Confluent Cauchy-like
matrix into a Cauchy-like matrix via a matrix with a generalized circu-
lant displacement structure. After transforming a confluent Cauchy-like
matrix to a Cauchy-like matrix, we proposed a fast pivoting algorithm
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to factorize the derived Cauchy-like matrix. A method to avoid recon-
structible property were discussed. Finally, Experiments were performed
in order to clarify that this new algorithm is faster than Cholesky algo-
rithm and more accurate than the generalized Schur algorithm.
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