Fractionation and Potential Mobility of Heavy Metals in Tailings and Paddy Soils near Abandoned Metalliferous Mines

폐광산 광미와 논토양의 중금속 분획화 및 잠재적인 이동도

  • Jung, Goo-Bok (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jong-Sik (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Won-Il (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Jin-Ho (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Shin, Joung-Du (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Yun, Sun-Gang (Research Development Bureau, Research Management Division, RDA)
  • 정구복 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 신중두 (농업과학기술원 환경생태과) ;
  • 윤순강 (농촌진흥청 연구개발국 연구관리과)
  • Received : 2005.07.06
  • Accepted : 2005.08.26
  • Published : 2005.10.30

Abstract

Most of the tailings have been left without any management in their mines and have become the main source of serious environmental problems in nearby groundwater, stream and cultivated lands. To compare fractionation and potential mobility of heavy metals in tailings and paddy soils near abandoned 10-metalliferous mines in Korea, the distribution and chemical fractions of heavy metal and their mobility in relation to chemical compositions were investigated. The pollution index of heavy metal in mine tailing calculated with the permissible levels were in the order Cheongyang>Dogok>Beutdeun>Baegwoul mine, which were considered sufficient to raise environmental problems. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and Ni to total content in paddy soils were 49.1, 50.7, 26.8, 18.4 and 2.9%, respectively, and their rates of heavy metals in paddy soils were higher than that of mine tailing. Dominant chemical forms of heavy metals in tailings were sulfide and residual form (63-91%), specially, the exchangeable portion of Cd (21%) was relatively higher than that of other metals in paddy soils. The mobility factor of heavy metals in tailings and paddy soils was in the order Cd>Zn>Cu>Pb, and the mobility factor in tailing varied considerably among the mines. The potential mobility of heavy metals in tailings showed significant positive correlation with water-soluble $Al^{3+}$ and $Fe^{3+}$ contents, while in paddy soils, it correlated negatively with soil pH values.

폐금속광산 주변 잔류광미 및 논토양중의 중금속 분획과 잠재적인 이동도를 평가하기 위하여 10개 광산지역을 대상으로 중금속 분포비율, 화학적 존재형태 및 화학성분과의 관계를 조사한 결과는 다음과 같다. 잔류광미중의 중금속 오염지수는 청양>도곡>붓든>백월광산 순으로 그 값이 20보다 높았으며, 오염지수 값으로 볼 때 하부 생태계에 환경문제를 야기시킬 수준으로 생각되었다. 논토양중 왕수분해 전함량에 대한 0.1 M HCl 침출성 중금속 비율은 Cd 49.1, Cu 50.7, Pb 26.8, Zn 18.4 및 Ni 2.9%였으며, 그 비율은 잔류 광미와 비교하여 상대적으로 높게 나타났다. 잔류광미중의 주된 중금속 존재형태는 잔류태 (63-91%) 였으며, 논토양에서 식물 흡수이행과 관련성이 높은 치환성 Cd 함량비율이 21%로 나타나 다른 중금속과 비교하여 상대적으로 높은 비율을 보였다. 잔류광미 및 논토양의 중금속 이동계수는 Cd>Zn>Cu>Pb 순으로 높았으며, 논토양보다 잔류 광미에서 광산지역간 편차가 심하게 나타났다. 광미중의 잠재적인 중금속 이동도와 유효도는 수용성 $Al^{3+}$$Fe^{3+}$ 함량과 정의 상관, 그리고 논토양에서는 토양 pH값과 부의 상관을 보였다. 이상의 결과에서 폐광산 주변에서 중금속의 잠재적인 이동성은 광상 및 생상 광종의 차이에서 기인하는 pH 변화와 황화물 및 Mn-Fe 수산화물 조성에 영향을 받는 것으로 생각되며, 이와 관련하여 광산하부 수계 및 토양환경계에서 산성배수에 따른 중금속 확산오염에 대한 앞으로의 연구가 필요할 것으로 판단되었다.

Keywords

References

  1. Choi, S. G., S. J. Park, P. K. Lee, and C. S. Kim. 2004. An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol. 37:1-19
  2. de Matos, A. T., M. P. F. Fontes, L. M. da Costa, and M. A. Martinez. 2001. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ. Pollut. 111:429-435 https://doi.org/10.1016/S0269-7491(00)00088-9
  3. Jeon, S. R., J. I. Chung, and D. H Kim. 2002. Environmental effects from natural waters contaminated with acid mine drainage in the abandoned Backun mine area. Econ. Environ. Geol. 35:325-337
  4. Jung, M. C., M. Y. Jung, and Y. W Choi. 2004. Environmental assessment of heavy metals around abandoned metalliferous mine in Korea. Econ. Environ. Geol. 37:21-33
  5. Jurjovec, J., C. J. Ptacek, and D. W. Blowes. 2002. Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim. Cosmochim. Acta. 66:1511-1523 https://doi.org/10.1016/S0016-7037(01)00874-2
  6. Kabala, C. and B. R. Singh. 2001. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual. 30:485-492 https://doi.org/10.2134/jeq2001.302485x
  7. Kim, K. W. 1997. Evaluation of analytical results of heavy metal concentrations in soil from the Dalsung mine area. Korea. J. KoSSGE. 4:20-26
  8. Kim, M. J., and Y. Jung. 2004. Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine. J Environ. Sci. Health 39:203-212 https://doi.org/10.1081/ESE-120027379
  9. Kloke, A. 1979. Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. Paper presented at United Nations-ECE Symp. Geneva, Swiss
  10. Lee, P. K.,H. Y.Jo,and S.J. Youm. 2004. Geochemical approaches for investigation and assessment of heavy metal contamination in abandoned mine sites. Econ. Environ. Geol. 37:35-48
  11. Lee, P. K., M. J. Kang, S. H. Choi, and S. C. Shin. 2004. Chemical speciation and potential mobility of heavy metals in tailings and contaminated soils. Econ. Environ. Geol. 37:87-98
  12. Lee, S. H., and J. Y. Jung. 2004. Geochemical characteristics of soil solution from the soil near mine tailing dumps and the contamination assessment in Duckum mine. Econ. Environ. Geol. 37:61-72
  13. Margui, E., V. Salvado, I. Queralt, and M. Hidalgo. 2004. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Analytica Chimica Acta. 524:151-159 https://doi.org/10.1016/j.aca.2004.05.043
  14. Ministry of Environment. 2003a. Standard test method for soil pollution. http://www.me.go.kr. p.29-164
  15. Ministry of Environment. 2003b. Soil environmental conservation act. http://www.me.go.kr
  16. Moon, Y. H., H. S. Moon, Y. S. Park, J. W. Moon, Y. G. Song, and J. C. Lee. 2003. Mobility of transition metals by change ofredox condition in dump tailings from the Dukum mine. Korea. Econ. Environ. Geol. 36:285-293
  17. Narwal, R. P., B. R. Singh, and B. Salbu. 1999 Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil. Sci. Plant Anal. 30: 1209-1230. https://doi.org/10.1080/00103629909370279
  18. NlAST (National Institute of Agricultural Science and Technology). 1988. Methods of soil chemical analysis. Sam-Mi press, Seoul, Korea
  19. Pueyo, M., J. Sastre, E. Hernandez, M. Vidal, J. F. Lopez-Sanchez, and G. Rauret. 2003. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32:2054-2066 https://doi.org/10.2134/jeq2003.2054
  20. Shu, W. S., Z. H. Ye, C. Y. Lan, Z. Q. Zhang, and M. H. Wong. 2001. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environ. Int. 26:389-394 https://doi.org/10.1016/S0160-4120(01)00017-4
  21. Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  22. Ullrich, S. M., M. H. Ramsey, and E. Helios-Rybicka. 2000. Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Appl. Geochem.14:187-196
  23. US EPA. 1996. Microwave assisted acid dissolution of sediments, sludges, soils and oils(Method 3051A). http://www.epa.gov/SW846/pdfs/3051a.pdf. Rev.1. p.1-25
  24. Vega, F. A., E. F. Covelo, M. L. Andrade, and P. Marcet. 2004. Relationships between heavy metals content and soil properties in mine soils. Analytica Chimica Acta. 524:141-150 https://doi.org/10.1016/j.aca.2004.06.073
  25. Walker, D. J., R. Clemente, and M. P. Bernal. 2004. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215-224 https://doi.org/10.1016/j.chemosphere.2004.05.020