Solubilization of Rock Phosphates by Alginate Immobilized Cells of Pantoea agglomerans

Alginate에 고정화된 Pantoea agglomerans에 의한 인광석 가용화

  • Ryu, Jeoung-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Seshadri, Sundaram (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2005.06.11
  • Accepted : 2005.07.28
  • Published : 2005.08.30

Abstract

Pantoea agglomerans immobilized in alginate solubilized four different rock phosphates efficiently under in vitro conditions. The solubilization pattern differed according to the rock phosphate source, where maximum solubilization of Morocco and Tunisia rock phosphates (215.6 and $186.1mg\;P\;L^{-1}$) on 6 days, Israel rock phosphate ($60.98mg\;P\;L^{-1}$) and tricalcium phosphate ($132.3mg\;P\;L^{-1}$) on 10 days and China rock phosphate ($48.8mg\;P\;L^{-1}$) on 12 days after inoculation was observed. The shelf life of the immobilized bacteria immobilized beads stored in two different temperatures was studied for six months. Beads stored at both room temperature as well as cold storage ($4^{\circ}C$) were found equally good in supporting the bacterial population as well as phosphate solubilizing activity. P. agglomerans immobilized in alginate might be exploited for large scale biosolubilization of rock phosphates intended for fertilizer use.

본 실험은 인산가용화균인 Pantoea agglomerans를 alginate를 이용하여 고정화 시킨 후 다양한 종류의 인광석을 대상으로 인산 가용화능을 평가하고 고정화된 균의 보관 및 저장온도에 따른 인산 가용화능의 변화를 살펴보기 위하여 수행되었다. 실험에 사용된 원산지가 다른 인광석 (Tunisia, Israel, Morocco, China) 중 Morocco산 인광석의 가용화 속도가 빠르고 높은 농도의 인산이 가용화 되었다. 반면, 중국산 인광석은 가용화 속도가 느리며, 가용화된 인산의 농도도 매우 낮았다. 고정화된 균의 저장 온도는 6개월간 보관 시 인산 가용화능에 유의성 있는 차이를 나타내자 않았다.

Keywords

References

  1. Babenko Yu, S., G.I. Tyrygina, E. F. Grigorev, L. M. Dolgikh, and T. I. Borisova. 1984. Biological activity and physiological biochemical properties of phosphate dissolving bacteria. Microbiologiya 53:533-539
  2. Banik, S., and B. K. Dey. 1981. Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt fur Bakteriologie, prasitenkunde, Infektionskrankheiten und Hygeine (II). Naturwissenschaftliche Abteilung 138:17-23
  3. Bashan, Y., and L. E. Gonzalez. 1999. Long term survival of the plant growth promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl. Microbiol. Biotechnol. 51:262-266 https://doi.org/10.1007/s002530051391
  4. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51:1089-1098
  5. Bashan, Y. 1998. Inoculants for plant growth promoting bacteria in agriculture. Biotechnol. Adv. 16:729-770 https://doi.org/10.1016/S0734-9750(98)00003-2
  6. Chabot, R., H. Antoun, and M. P. Cescas. 1993. Stimulation de la croissance du mais et de la laitue romaine par des microorganisms dissolvent de phosphore inorganique. Can. J. Microbiol. 39:941-947 https://doi.org/10.1139/m93-142
  7. Chabot, R., H. Antoun, and M. P. Cescas. 1996. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarium biovar phaseoli. Plant Soil 184:311-321 https://doi.org/10.1007/BF00010460
  8. Chung, H. K, J. H. Ryu, H. S. Lee, M. S. Park, M. Madhaiyan, S. Seshadri, and T. M. Sa. 2004. Effect of immobilized cells of Pantoea agglomerans on growth promotion of rice (Oryza sativa L.) in the presence of rock phosphates. Korean J. Soil. Sci. Fert. 37:41-45
  9. de Freitas, J. R., N. R. Banerjee, and J. J. Germida. 1997. Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canol a (Brassica napus L.). BioI. Fertil. Soils 24:358-364 https://doi.org/10.1007/s003740050258
  10. Fenice , M., L. Selbman, F. Fedirici, and N. Vassilev. 2000. Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresource Technol. 73:157-62 https://doi.org/10.1016/S0960-8524(99)00150-9
  11. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173-195 https://doi.org/10.1023/A:1013351617532
  12. Illmer, P., and F. Schinner. 1995. Solubilization of inorganic calcium phosphates - solubilization mechanisms. Soil BioI. Biochem.27:257-263 https://doi.org/10.1016/0038-0717(94)00190-C
  13. Johri, J. K., S. Surange, and C. S. Nautiyal. 1999. Occurrence of salt, pH, and temperature tolerant, phosphate solubilizing bacteria in alkaline Soils. Curr. Microbiol. 39:89-93 https://doi.org/10.1007/s002849900424
  14. Kim E. H., S. A. Park, J. C. Yang, M. Madhaiyan, S. Seshadri, and T. M. Sa. 2004. Inorganic phosphate solubilization by immobilized Pantoea agglomerans under in vitro conditions. Korean J. Soil Sci. Fert. 37:36-40
  15. Kim, E. H., S. Seshadri, M. S. Park, W. S. Shin, and T. M. Sa. 2003. Influence of carbon and nitrogen sources in solubilization of hardly soluble mineral phosphates by Penicillium oxalicum CBPS3F- Tsa. Korean J. Environ. Agric. 22:197-202 https://doi.org/10.5338/KJEA.2003.22.3.197
  16. Kim, K. Y., G. A. Mcdonald, and D. Jordan. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils 24:347-352 https://doi.org/10.1007/s003740050256
  17. Krishnaraj, P. U., and A. H. Goldstein. 2001. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol. Lett. 205:215-20 https://doi.org/10.1111/j.1574-6968.2001.tb10950.x
  18. Kumar, V., and N. Narula. 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol, Fertil. Soils 28:301-305 https://doi.org/10.1007/s003740050497
  19. Mattiasson, B. 1983. Immobilised viable cells. In B. Mattiasson (ed.) Immobilised cells and organelles. Vol. II. CRC Press, Inc., Boca Raton, FL, USA
  20. Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  21. Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182:291-296 https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
  22. Pal, S. S. 1998. Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169-177 https://doi.org/10.1023/A:1004318814385
  23. SAS, Institute Inc. 2001. SAS user's guide. Version 8.2. SAS Institute Inc., Cary, NC, USA
  24. Sperber, J. I. 1958. The incidence of apatite dissolving organisms producing organic acids. Australian J. Agric. Res. 9:778-781 https://doi.org/10.1071/AR9580778
  25. Van Elsas, J. D., and C. E. Heijnen. 1990. Methods for the introduction of bacteria into soil: a review. Biol, Fertil. Soils 19:127-133
  26. Vassilev, N., M. Toro, M. Vassileva, R. Azcon, and J. M. Barea. 1997b. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Biores. Technol. 61:29-32 https://doi.org/10.1016/S0960-8524(97)84694-9
  27. Vassilev, N., M. Vassileva, and R. Azcon. 1997a. Solubilization of rock phosphate by immobilized Aspergillus niger. Bioresource Technol. 59: 1-4 https://doi.org/10.1016/S0960-8524(96)00137-X
  28. Vassilev, N., M. Vassileva, R. Azcon, and J. M. Barea. 2001. Interactions of an arbuscular mycorrhizal fungus with free or coencapsulated cells of Rhizobium trifoli and Yarowia lipolytica inoculated into a soil plant system. Biotechnol. Lett. 23:149-151 https://doi.org/10.1023/A:1010395813017
  29. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J. Biotechnol. 63:67-72 https://doi.org/10.1016/S0168-1656(98)00074-1
  30. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 2000. Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem. 35:693-697 https://doi.org/10.1016/S0032-9592(99)00132-6
  31. Zaidi, A., M. S. Khan, and M. D. Amil. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur. J. Agron. 19:15-21 https://doi.org/10.1016/S1161-0301(02)00015-1
  32. Zayed, G. 1997. Can immobilization of Bacillus megaterium cells in alginate beads protect them against bacteriophages. Plant Soil 197:1-7 https://doi.org/10.1023/A:1004250221549