A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Published : 2005.06.30

Abstract

A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Keywords

References

  1. S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, Y. Moriyama, S. Nakaharai, J. Koga, A. Tanabe, N. Hirashita, and T. Maeda, Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator (Strained-SOI) MOSFETs , IEDM, pp. 03.57- 03-60 (3.3.1-3.3.4), 2003 https://doi.org/10.1109/IEDM.2003.1269165
  2. K. Rim, J. L. Hoyt, and J. F. Gibbons, Fabrication and analysis of deep submicron strained N-MOSFETs , IEEE Trans on Electron Devices., vol. 47, no. 7, pp. 1406-1415, 2000 https://doi.org/10.1109/16.848284
  3. X. F. Fan, X. Wang, B. Winstead, L. F. Register, U. Ravaioli, and S. K. Banerjee, MC simulation of strained-Si MOSFET with full band structure and quantum correction , IEEE Trans on Electron Devices., vol. 51, no. 6, pp. 962-970, 2004 https://doi.org/10.1109/TED.2004.828296
  4. J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, D. A. Antoniadis, Strained silicon MOSFET technology , IEDM pp. 23-26 (2.1.1-2.1.4), 2002 https://doi.org/10.1109/IEDM.2002.1175770
  5. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs , IEDM pp.03.49-03.52 (3.1.1 - 3.1.4), 2003 https://doi.org/10.1109/IEDM.2003.1269163
  6. K. Rim, J. L. Hoyt, and J. M. Gibbons, Transconductance enhancement in deep submicron strained-Si n-MOSFETs , IEDM pp. 707-710 (26.8.1 - 26.8.4), 1998 https://doi.org/10.1109/IEDM.1998.746455
  7. S. H. Olsen, A. G. O Neill, L. S. Driscoll, S. Chattopadhyay, S. Kelvin, K. Kwa, A. M. Waite, Y. T. Tang, G. R. Evans, and J. Zhang, Optimization of alloy composition for high-performance strained-Si-SiGe n-channel MOSFETs , IEEE Trans. On Electron Devices, Vol. 51, no. 7, pp. 1156-1162, 2004 https://doi.org/10.1109/TED.2004.830656
  8. M. L. Lee and E. A. Fitzgerald, Optimized strained Si/strained Ge dual channel heterostructures for high mobility p- and n-MOSFETs , IEDM 03-429 - 03-432(18.1.1 - 18.1-4), 2003 https://doi.org/10.1109/IEDM.2003.1269314
  9. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, Electron and hole mobility enhancement in strained-Si MOSFETs on SiGe-on insulator substrates fabricated by SIMOX technology , IEEE Electron Device Letters, Vol. 21, no. 5, pp. 230-232, 2000 https://doi.org/10.1109/55.841305
  10. T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, T. Maeda, and S. Takagi, Design for scaled thin film strained-SOI CMOS devices with higher carrier mobility, IEDM 31-34 (2.3.1 - 2.3.4), 2002 https://doi.org/10.1109/IEDM.2002.1175772
  11. A. Kawamoto, S. Sato, and Y. Omura, Engineering S/D diffusion for sub-100nm channel SOI MOSFETs , IEEE Trans. On Electron Devices, Vol. 51, no. 6, pp. 907-913, 2004 https://doi.org/10.1109/TED.2004.827360
  12. A. Lochtefeld, I. J. Djomehri, G. Samudra, D. A. Antoniadis, New insights into carrier transport in n-MOSFETs , IBM J. Res & Dev, Vol. 46, NO. 2/3, pp. 347-357, 2002 https://doi.org/10.1147/rd.462.0347
  13. C. M. Osburn, I. Kim, S. K. Han, I. De, K. F. Yee, S. Gannavaram, S. J. Lee, C. H. Lee, W. Zho, J. R. Hauser, D. L. Kwong, G. Lucovsky, T. P. Ma, and M. C. zturk, Vertically scaled MOSFETs gate stacks and junctions: How far are likely to go? , IBM J. Res & Dev, Vol. 46, NO. 2/3, pp. 3299-311, 2002 https://doi.org/10.1147/rd.462.0299
  14. Y. Taur, C. H. Wann, and D. J. Frank, 25 nm CMOS consideration , IEDM 98-789-98-792 (29.4.1 - 29.4.4), 1998 https://doi.org/10.1109/IEDM.1998.746474
  15. C-h. Choi, Z. Yu, and R. W. Dutton, Modeling of CMOS scaling with emphasis on gate tunneling and source/drain resistance , Superlattices and Microstructures, Vol. 27. No. 2/3, pp. 191-206, 2000 https://doi.org/10.1006/spmi.1999.0799
  16. M. Lundstrom and Z. Ren, Essential physics of carrier transport in nanoscale MOSFETs , IEEE Trans. On Electron Devices, Vol. 49, no. 1, pp. 133-141, 2002 https://doi.org/10.1109/SISPAD.2000.871193
  17. ISE TCAD, DESSIS/Mdraw, Ver. 9.0.5, Instructions manuals, 2003
  18. ISE News Letter, December 2003, pp. 10-12, www.ise.ch/appex/strain_si
  19. C. Choi, Modeling of nanoscale MOSFETs , Ph.D thesis, Stanford University, USA, April 2002
  20. S. Wolf, Silicon processing for the VLSI Era , Vol 4, Ch 5, ISBN 0-9616721-7-X, 2002
  21. Yuan Taur, T H. Ning, Fundamentals of modern VLSI devices , ISBN 0-521-55056-4, Cambridge University Press UK, 1998
  22. M. V: Fischetti and S. E. Laux, Performance degradation of small silicon devices caused by long range Coulomb interactions , Appl. Phys. Letts, Vol. 76, no. 16, pp. 2277- 2279, 2000 https://doi.org/10.1063/1.126320
  23. M. R. Pinto, E. Sangiorgi, and J. Bude, Silicon MOS transconductance sacling into the overshot regime , IEEE Electron Device Letters, Vol. 14, no. 8, pp. 375-377, 1993 https://doi.org/10.1109/55.225584