Synthesis and Characterization of Perylene-based Pyrrolopyrone Derivative for Organic Thin Film Transistor

  • Kim, Hyung-Sun (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Jung, Sung-Ouk (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Do, Lee-Mi (Basic Research Laboratory, ETRI) ;
  • Kwon, Soon-Ki (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University)
  • Published : 2005.12.21

Abstract

Perylene-based pyrrolopyrone derivative (PPD) was synthesized via condensation reaction with perylenetetracarboxylic dianhydride and 1,2-phenylenediarnine as n-type channel material. The structure of PPD was characterized by spectroscopic methods such FT-IR and $^1H$-NMR. PPD exhibited high thermal stability ($T_{d5wt%}: 560^{\circ}C$) and was found to be soluble only in protonic solvents with high acidity such as methane sulfonic acid and trifluoroacetic acid. The PPD solution showed maximum absorption and emission at 601 and 628 nm, respectively. Thin film transistors were fabricated by vacuum deposition and solution casting method. The electron mobilities of the devices were achieved as high as $0.17{\times}10^{-6}cm^2/Vs$ for vacuum deposited device and $0.4{\times}10^{-6}cm^2/Vs$ for spin coated device, respectively.

Keywords

References

  1. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, Appl. Phys. Lett, 78, 2229 (2001) https://doi.org/10.1063/1.1337631
  2. R. Wisnieff, Nature 394, 225 (1998)
  3. S. W. Pyo, J. H. Shin, and Y. K. Kim, J. Inform. Dis. 4, 1 (2003)
  4. C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283, 822 (1999)
  5. H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H. Sakaki, Appl. Phys. Lett. 58, 1500 (1991) https://doi.org/10.1063/1.104437
  6. Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 120, 207 (1998)
  7. G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues, X. Pan, and F. Garnier, Adv. Mater. 8, 242 (1996)
  8. P. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Appl. Phys. Lett. 80, 2517 (2002)
  9. S. G. Liu, G. Sui, R. A. Cormier, R. M. Leblanc, and B. A. Gregg, J. Phys. Chem. B 206, 1307 (2002)
  10. C. Videlot, J. Ackermann, P. Blanchard, J. M. Raimundo, P. Frère, M. Allain, R. de Bettignies, E. Levillain, and J. Roncali, Adv. Mater. 15, 306 (2003) https://doi.org/10.1002/adma.200390005
  11. H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, J. Am. Chem. Soc. 122, 7787 (2000)
  12. D. C. Shin, Y. H. Kim, H. You, and S. K. Kwon, Macromolecules 36, 3222 (2003)
  13. C. D. Dimitrakopoulos, and P. Malenfant, Adv. Mater. 14, 99 (2002)