Abstract
Perylene-based pyrrolopyrone derivative (PPD) was synthesized via condensation reaction with perylenetetracarboxylic dianhydride and 1,2-phenylenediarnine as n-type channel material. The structure of PPD was characterized by spectroscopic methods such FT-IR and $^1H$-NMR. PPD exhibited high thermal stability ($T_{d5wt%}: 560^{\circ}C$) and was found to be soluble only in protonic solvents with high acidity such as methane sulfonic acid and trifluoroacetic acid. The PPD solution showed maximum absorption and emission at 601 and 628 nm, respectively. Thin film transistors were fabricated by vacuum deposition and solution casting method. The electron mobilities of the devices were achieved as high as $0.17{\times}10^{-6}cm^2/Vs$ for vacuum deposited device and $0.4{\times}10^{-6}cm^2/Vs$ for spin coated device, respectively.