Photoelectron Spectroscopy Studies of the Electronic Structures of Al/RbF and $Al/CaF_2$ Cathodes for $Alq_3$-based Organic Light-emitting Devices

  • Park, Yong-Sup (Nano-Surface Group, Korea Research Institute of Standards and Science) ;
  • Lee, Jou-Hahn (Nano-Surface Group, Korea Research Institute of Standards and Science)
  • Published : 2005.03.21

Abstract

The electronic structures of Al/RbF/tris-(8-hydroxyquinoline)aluminium ($Alq_3$) and $Al/CaF_2/Alq_3$interfaces were investigated using x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). For both systems, the UPS showed a significant valence band shift following the deposition of the thin fluoride layers on $Alq_3$. However, the formation of gap state in valence region and the extra peak N 1s core level spectra showed different trends, suggesting that the alkali fluoride and alkali-earth fluoride interlayer have different reaction mechanisms at the interface between Al cathode and $Alq_3$. In addition, the deposition of Al has considerably less effect on the valence band shift compared to the deposition of both RbF and $CaF_2$. These results suggest that the charge transfer across the interface and the resulting gap state formation may have lesser effect on the enhancement of organic light-emitting device performance than the observed valence band shift, which is thought to lower the electron injection barrier.

Keywords

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98983
  2. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989)
  3. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996) https://doi.org/10.1063/1.117107
  4. T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett., 73, 2763 (1998)
  5. Q. T. Le, L. Yan, Y. Gao, M. G. Mason, D. J. Giesen, and C. W.Tang, J. Appl. Phys., 87, 375 (2000)
  6. P. Pirorureun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, Appl. Phys. Lett., 77, 2403 (2000)
  7. L. S. Hung, C. W.Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997)
  8. S. E. Shaheen, G. E. Jabbour, M. M. Morell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Shlaf, E. A. Mash, and N. R. Armstrong, J. Appl. Phys., 84, 2324 (1998)
  9. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Appl. Phys. Lett., 80, 1288 (2002)
  10. T. M. Brown, R. H. Friend, 1. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett., 79, 174 (2001) https://doi.org/10.1063/1.1381035
  11. Y. Park, J. Lee, S. K. Lee, and D. Y. Kim, Appl. Phys. Lett., 79, 105 (2001) https://doi.org/10.1063/1.1381035
  12. J. Lee, Y. Park, S. K. Lee, E.-J. Cho, D. Y. Kim, H. Y. Chu, H. Lee, L.-M. Do, and T. Zyung, Appl. Phys. Lett., 80, 3123 (2002)
  13. D. Y. Kim, S. Cho, and Y. Park, J. Korean Phys. Soc., 37, 598 (2000)
  14. R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peygambarian, and N. R. Armstrong, J. Appl. Phys., 84, 6729 (1998)
  15. M. G. Mason, C. W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S.-T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, J. Appl. Phys., 89, 2756 (2001)