Cyclic Creep Properties of Nicoseal(Fe-29Ni-17Co) Alloy

Nicoseal(Fe-29Ni-17Co) 합금의 Cyclic 크리프 특성

  • Park, Yong-Gwon (Department of Materials Engineering, Chungbuk National University) ;
  • Choi, Jae-Ha (Department of Materials Engineering, Chungbuk National University)
  • Received : 2005.04.26
  • Accepted : 2005.05.28
  • Published : 2005.05.30

Abstract

The steady state cyclic mechanism, and the behaviour of Nicoseal(Fe-29Ni-17Co) have been examined under the condition of square wave stress cyclic tension creep test at the temperature, stress and frequency range of $430{\sim}470^{\circ}C$($0.41{\sim}0.43T_m$), 353~383 MPa, and 3 cpm, respectively. Also, the relationship between cyclic creep and static creep have been examined. The stress exponents(n) for the static creep deformation of this alloy were 11.6, 10.0, 8.4 and 7.9 at the temperature of 430, 445, 460 and $470^{\circ}C$, respectively. The apparent activation energies (Q) for the static creep deformation were 54.2, 51.8, 49.7 and 46.8 kcal/mole for the stress of 353, 363, 373 and 383 MPa, From the above results, it could be considered that the cyclic creep accelaration phenomena was obtained and that the cyclic deformation for Nicoseal seemed to be controlled by dislocation climb over the range of experimental conditions. Nicoseal alloy under the cyclic creep conditions was obtained as P=(T+460)(logt+17). The failure plane observed by SEM showed up transgranular fracture at all range.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. A. J. Kennedy: Proc. int. Conf. on Fatigue of Metals, (1956) 401-407
  2. A. H. Melreka, A.V. Evershed: J. of Inst. of Metals, 88 (1959) 411-414
  3. R. H. Dalton, How to Design Glass to Metal Joints., (Mc Graw Hill Book co, New York, 1965)
  4. E. N. da C. Andrade and B. Chalmers: Proc. Roy. Soc., 138A (1932) 348-374
  5. D. K. Shetty, M. Meshii: Met Trans., 6A (1975) 349-358
  6. S. W. Nam: Phenomenlogical Theory of Fatigue-Perturbed and Normal Creep of an Aluminum +4.6wt % Magnesium Alloy at High Temperature, Golden Co lorado, Colorado School of Mines, ph. D. Thesis (1974)
  7. A. T. Price: J. Inst. Metals., 95 (1967) 87-89
  8. W. L. Bradley, S. W. Nam, D. K. Matlock: Met. Trans., 7A (1976) 425-430
  9. J. T. Evans, R. N. Parkins: Acta Met, 24 (1976) 511-515 https://doi.org/10.1016/0001-6160(76)90094-8
  10. A. J. Kennedy: Proc. R. Soc. London, Ser. A. 213 (1952) 492
  11. A. Seeger: Phil. Mag., 46 (1955) 1194-1217 https://doi.org/10.1080/14786441108520632
  12. F. Garofalo: Trans AlME, 277 (1963) 351-355
  13. J. Weertman, J. appl. phys., 28 (1957) 1185 https://doi.org/10.1063/1.1722604
  14. J. Friedel, Dislocations, (Pergamon Press. 1964) 410
  15. S. L. Manner, P. Rodriguez: Metal Science, 17(2) (1983) 63 https://doi.org/10.1016/0036-9748(83)90071-6
  16. W. R. Canon, O. D. Sherby: Met Trans., 1 (1970) 1030
  17. K. Hirano, M. Cohen, B. L. Averbach: Acta Met., 9 (5) (1961) 440 https://doi.org/10.1016/0001-6160(61)90138-9
  18. J. J. Hefer, G. V. Smith: Elevated Temperature Properties As Influenced By Nitrogen Additions to types 304 and 316 Austenitic Stainless Steels, (ASTM special Technical Publication 522 (1969) 60-78
  19. J. D. Lubahn, R. P. Felgar: Plasticity and Creep of Metals, (1961) pp. 210 29. Robert E. Read-Hill, Physical Metalurgy Principles, 2nd ed.(D.Von Nonstrnad co, New York, 1973) 867