Evaporation Cooling of Water Droplet on Aluminum with Various Surface Roughness and Droplet Diameter in Conductive Condition

전도조건 하에서 표면조도와 액적 직경의 변화에 따른 알루미늄의 액적 증발 냉각

  • Jang, C.S. (Department of Mechanical Engineering, Kyungpook National University) ;
  • Choi, W.S. (Department of Mechanical Engineering, Miryang National University)
  • Received : 2005.11.18
  • Accepted : 2005.11.30
  • Published : 2005.11.30

Abstract

This paper presents the results of experimental investigation for the effect of heat conduction on the evaporation cooling of water droplet in the process of heat treatment. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter at aluminum. The range of surface temperature is from $80^{\circ}C$ to $140^{\circ}C$, surface roughness is from $R_a=0.18{\mu}m$ to $R_a=1.36{\mu}m$ and droplet diameter is from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness, the time averaged heat flux has maximum value for the larger surface roughness and exist the critical heat flux. The total evaporation time has a big influence on the evaporation region for the smaller droplet size, but the total evaporation time has not influence on the nuclear boiling region.

Keywords

References

  1. J. D. Bernardin and I. Mudawar, Int. J. of Heat Mass Transfer, 38 (1995) 863-873 https://doi.org/10.1016/0017-9310(94)00204-9
  2. D. D. Hall and I. Mudawar, Int. J. of Heat Mass Transfer, 38 (1995) 1201-1216 https://doi.org/10.1016/0017-9310(94)00244-P
  3. D. D. Hall and I. Mudawar, ASME J. Heat Transfer, 117 (1995) 479-488 https://doi.org/10.1115/1.2822547
  4. J. Kistemajer, Physial, 29 (1963) 96-104
  5. B. S. Gottfried, C. J. Lee and K. J. Bell, Int. J. of Heat Mass Transfer, 9 (1966) 1167-1187 https://doi.org/10.1016/0017-9310(66)90112-8
  6. J. D. Bernardin, C. J. Stebbins and I. Mudawar, Int. J. of Heat Transfer, 40 (1996) 247-267
  7. V. Betta, P. Mazzei, V. Naso and R. Vanoli, J. of Heat Transfer, 101 (1979) 613-616
  8. C. Bonacina, S. DelGiudice and G. Comini, J. of Heat Transfer, 101 (1979) 441-446 https://doi.org/10.1115/1.3451004
  9. J. Rizza, J. of Heat Transfer, 103 (1981) 501-507 https://doi.org/10.1115/1.3244492
  10. M. DiMarzo and D.D . Evans, J. of Heat Transfer, 111 (1989) 210-213 https://doi.org/10.1115/1.3250652
  11. S. Kline and F. A. McClintok, Mechanical Engineering, Jan, (1953) 3-8
  12. R. J. Moffat, J. of Fluids Engineering, 107 (1985) 173-182 https://doi.org/10.1115/1.3242452
  13. R. J. Moffat, Experimental Thermal and Fluid Science, 1 (1988) 3-17 https://doi.org/10.1016/0894-1777(88)90043-X
  14. I. Michiyoshi and K. Makino, Int. J. of Heat Mass Transfer, 21 (1978) 605-613 https://doi.org/10.1016/0017-9310(78)90057-1
  15. T. Jonas, A. Kubitzek and F. Obermeier, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, (1997) 1263-1270