The Effects of the Incident Nitrogen Ion Dose on the Plasma Immersion Ion Implantation of Nimonic 80A

Nimonic 80A의 PIII에 미치는 질소이온주입량의 영향

  • You, Y.Z. (School of Materials Science and Engineering, University of Ulsan) ;
  • Chun, H.G. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, D.I. (School of Materials Science and Engineering, University of Ulsan) ;
  • Cha, B.C. (School of Materials Science and Engineering, University of Ulsan) ;
  • Koo, K.W. (Dept. of Defense Science & Technology, Hosea University)
  • 유용주 (울산대학교 첨단소재공학부) ;
  • 천희곤 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부) ;
  • 차병철 (울산대학교 첨단소재공학부) ;
  • 구경완 (호서대학교 국방과학기술학과)
  • Received : 2005.12.15
  • Accepted : 2006.01.03
  • Published : 2005.11.30

Abstract

Nitrogen ion implantation in Nimonic 80A using plasma immersion ion implantation (PIII) was investigated at a pulse voltage of -60 kV and ion dose of $3{\times}10^{17}{\sharp}/cm^2$, $6{\times}10^{17}{\sharp}/cm^2$, $12{\times}10^{17}{\sharp}/cm^2$. PIII is an effective technology to improve the surface hardness and wear resistance of materials. And also this technology is not limited by the shape and size of materials. PIII would be a promising technique in the future. Surface hardness and wear resistance of the $N^+$ ion implanted Nimonic 80A were increased with the increase in the incident ion dose. The surface hardness of the untreated Nimonic 80A is 420 Hv, the hardness of implanted Nimonic 80A is 1050 Hv at $N^+$ ion dose of $12{\times}10^{17}{\sharp}/cm^2$. The wear loss of the untreated is 82.5 mg, the wear loss of the implanted is 0.004g at $N^+$ ion dose of $12{\times}10^{17}{\sharp}/cm^2$. The $Cr_2N$ is detected on the surface of the implanted Nimonic 80A by XRD analysis.

Keywords

References

  1. A. Anders (Ed.), 'Handbook of plasma immersion ion implantation and deposition', Wiley, New York (2000) 553-568
  2. L. Tan, G. Shaw, K. Sridharan and W.C. Crone, Mechanics of Materials, 37 (2005) 1059-1068 https://doi.org/10.1016/j.mechmat.2005.04.001
  3. S. Namba (Ed), 'Ion Implantation in Semiconductors', Plenum Press, New York (1974)
  4. M. Iwakai, Thin Solid Films 101 (1983) 223 https://doi.org/10.1016/0040-6090(83)90249-3
  5. J. k Hirvonen, J. Vac. Sci. Tech. 15 (1978) 1662 https://doi.org/10.1116/1.569825
  6. Dong Kwon Kim, Dong Young Kim, Seog Hyeon Ryu, Dong Jim Kim, 'Jof Mat. Proc. Tech.' 113 (2001) 148-152 https://doi.org/10.1016/S0924-0136(01)00700-2
  7. S. Thomas Prcraus, Physics Today, Nov. 37 (1984) 38
  8. P. Sioshansi, R. W. Oliver, and F. D. Metthews, J. Vac. Sci. Thechnol., O-1A3(6) (1985) 2670
  9. L. E. Rehn, S. T. Picaraux, and H. Wiedersich, American Society for Metal, Ohio (1987)
  10. 金弘球, 金慶洙, 吉相哲, 熱處理技術 産業硏究院, 1990, 420-449
  11. J. k Hirvonen, Ion Implantation, Acad. Press (1980)
  12. G. Dearnaley, J. Metall. Sep. (1982) 18
  13. A. Chen et al., Surf. & Coat. Technol., 82 (1996) 305 https://doi.org/10.1016/0257-8972(95)02745-9
  14. A. Chen et al., Surf. & Coat. Technol., 82 (1996) 149