The Effect of Dimyristoylphosphatidylethanol on the Lateral and Rotational Mobilities of Liposome Lipid Bilayers

  • Jang, Hye-Ock (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Huh, Min-Hoi (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lee, Seung-Woo (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lee, Young-Ho (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lee, Jong-Hwa (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Seo, Jun-Bong (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Koo, Kyo-Il (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jin, Seong-Deok (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jeong, Je-Hyung (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lim, Jang-Seop (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Bae, Moon-Kyung (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Yun, Il (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
  • Published : 2005.07.01

Abstract

The aim of this study was to provide the basis to further examine the mode of action of ethanol. Fluorescent probes reported to have different membrane mobilities were used to evaluate the effect of dimyristoylphosphatidylethanol (DMPEt) on the lateral and rotational mobilities of liposome lipid bilayers. An experimental procedure, based on the selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, was used. DMPEt increased the bulk lateral and rotational mobilities, and had a greater fluidizing effect on the outer than the inner monolayer. These effects of DMPEt on liposomes may be responsible for some, but not all, of the general anesthetic actions of ethanol.

Keywords

References

  1. Alling, C., Gustavsson, L., Mansson, J.-E., Benthin, G., and Anggard, E., Phosphatidylethanol formation in rat organs after ethanol treatment. Biochim. Biophys. Acta, 793, 119- 122 (1984) https://doi.org/10.1016/0005-2760(84)90060-2
  2. Angelova, M. L. and Dimitrov, D. S., Liposome electroformation. Faraday Discuss. Chem. Soc., 81, 303-311 (1986) https://doi.org/10.1039/dc9868100303
  3. Angelova, M. L., Soleau, S., Meleard, P. H., Faucon, J. F., and Bothorel, P., Preparation of giant vesicles by external AC fields, kinetics and application. Prog. Colloid. Polym. Sci., 89, 127-131 (1992) https://doi.org/10.1007/BFb0116295
  4. Armbrecht, H. J., Wood, W. G., Wise, R. W., Walsh, J. B., Thomas, B. N., and Strong, R., Ethanol-induced disordering of membranes from different age groups of C57BL/6NNIA mice. J. Pharmacol. Exp. Ther., 226, 387-391 (1983)
  5. Bae, M. K., Huh, M. H., Lee, S. W., Kang, H. G., Pyun, J. H., Kwak, M. H., Jang, H. O., and Yun, I., Effects of dopamine HCl on structural parameters of bovine brain membranes. Arch. Pharm. Res., 27, 653-661 (2004) https://doi.org/10.1007/BF02980166
  6. Bae, M. K., Jeong, D. K., Park, N. S., Lee, C. H., Cho, B. H., Jang, H. O., and Yun, I., Effects of ethanol on the physical properties of Neuronal Membranes. Mol. Cells, 19, 356-364 (2005)
  7. Bagatolli, L. A. and Gratton, E., Two photon fluorescence microscopy observation of shape change at the phase transition in phospholipid giant unilamellar vesicles. Biophys. J., 77, 2090-2101 (1999) https://doi.org/10.1016/S0006-3495(99)77050-5
  8. Bagatolli, L. A. and Gratton, E., Two photon fluorescence microscopy of coexisiting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys. J., 78, 290-305 (2000) https://doi.org/10.1016/S0006-3495(00)76592-1
  9. Bangham, A. D. and Mason, W., The effect of some general anesthetics on the surface potential of lipid monolayers. Br. J. Pharmacol., 66, 259-265 (1979) https://doi.org/10.1111/j.1476-5381.1979.tb13674.x
  10. Bartlett, G. R., Phosphorous assay in column chromatography. J. Biol. Chem., 234, 466-468 (1959)
  11. Chin, J. H. and Goldstein, D. B., Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol. Pharmacol., 13, 435-441 (1977a)
  12. Chin, J. H. and Goldstein, D. B., Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science, 196, 684-685 (1977b) https://doi.org/10.1126/science.193186
  13. Chin, J. H. and Goldstein, D. B., Membrane-disordering action of ethanol: variation with membrane cholesterol content and depth of the spin label probe. Mol. Pharmacol., 19, 425-431 (1981)
  14. Chin, J. H. and Goldstein, D. B., Cholesterol blocks the disordering effects of ethanol in biomembranes. Lipids, 19, 929-935 (1984) https://doi.org/10.1007/BF02534728
  15. Davidson, F. M. and Long, C., The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem. J., 69, 458-466 (1958) https://doi.org/10.1042/bj0690458
  16. Dimitrov, D. S. and Angelova, M. L., Lipid swelling and liposome formation on solid surfaces in external electric fields. Prog. Colloid. Polym. Sci., 73, 48-56 (1987) https://doi.org/10.1007/3-798-50724-4_62
  17. Franks, N. P. and Lieb, W. R., Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature, 316, 349-351 (1985) https://doi.org/10.1038/316349a0
  18. Franks, N. P. and Lieb, W. R., Neuron membranes: anesthetics on the mind. Nature, 328, 113-114 (1987) https://doi.org/10.1038/328113a0
  19. Franks, N. P. and Lieb, W. R., Do general anesthetics act by competitive binding to specific receptors? Nature, 310, 599- 601 (1993) https://doi.org/10.1038/310599a0
  20. Franks, N. P. and Lieb, W. R., Molecular and cellular mechanisms of general anesthesia. Nature, 367, 607-614 (1994) https://doi.org/10.1038/367607a0
  21. Gonzales, R. A. and Hoffman, P. L., Receptor-gated ion channels may be selective CNS targets for ethanol. Trends Pharmacol. Sci., 12, 1-3 (1991) https://doi.org/10.1016/0165-6147(91)90478-B
  22. Huang, N.-N., Florine-Casteel, K., Feigenson, G. W., and Spink, C., Effect of fluorophore linkage position of n-(9-anthroyloxy) fatty acids on probe distribution between coexisting gel and fluid phospholipid phases. Biochim. Biophys. Acta, 939, 124- 130 (1988) https://doi.org/10.1016/0005-2736(88)90053-3
  23. Jacobs, R. E. and White, S. H., The nature of the hydrophobic binding of small peptides at the bilayer interface. Implications for the insertion of transbilayer helices. Biochemistry, 28, 3421-3437 (1989) https://doi.org/10.1021/bi00434a042
  24. Jang, H. O., Jeong, D. K., Ahn, S. H., Yoon, C. D., Jeong, S. C., Jin, S. D., and Yun, I. Effects of chlorpromazine.HCl on the structural parameters of bovine brain membranes. J. Biochem. Mol. Biol., 37, 603-611 (2004b) https://doi.org/10.5483/BMBRep.2004.37.5.603
  25. Jang, H. O., Shin, H. G., and Yun, I., Effects of dimyristoylphosphatidylethanol on the structural parameters of neuronal membrane. Mol. Cells, 17, 485-491 (2004a)
  26. Kang, J.-S., Choi, Ch.-M., and Yun, I., Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim. Biophys. Acta, 1281, 157-163 (1996) https://doi.org/10.1016/0005-2736(95)00301-0
  27. Lasic, D. D., The mechanism of vesicle formation. Biochem. J., 256, 1-11 (1988) https://doi.org/10.1042/bj2560001
  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
  29. Madeira, V. M. C. and Antunes-Madeira, M. C., Lipid composition of biomembranes: a complete analysis of sarcoplasmic reticulum phospholipids. Cienc. Biol., (Coimbra) 2, 265-291(1976)
  30. Menger, F. M. and Keiper, J. S., Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol., 2, 726-732 (1998) https://doi.org/10.1016/S1367-5931(98)80110-5
  31. Omodeo-Sale, M. F., Cestaro, B., Mascherpa, A., Monti, D., and Masserini, M., Enzymatic synthesis and thermotropic behavior of phosphatidylethanol. Chem. Phys. Lipids, 50, 135-142 (1989) https://doi.org/10.1016/0009-3084(89)90037-6
  32. Omodeo-Sale, M. F., Lindi, C., Palestini, P., and Masserini, M., Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochemistry, 30, 2477-2482 (1991) https://doi.org/10.1021/bi00223a026
  33. Sanna, E., Concas, A., Serra, M., Santoro, G., and Biggio, G., Ex vivo binding of t-[35S)butylbicyclophosphorothionate: a biochemical tool to study the pharmacology of ethanol at the gamma-aminobutyric acid-coupled chloride channel. J. Pharmacol. Exp. Ther., 256, 922-928 (1991)
  34. Schachter, D., Fluidity and function of hepatocyte plasma membranes. Hepatology, 4, 140-151 (1984) https://doi.org/10.1002/hep.1840040124
  35. Sheetz, M. P. and Singer, S. J., Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. U.S.A., 71, 4457-4461 (1974) https://doi.org/10.1073/pnas.71.11.4457
  36. Stubbs, C. D. and Williams, B. W., Fluorescence in membranes; in Fluorescence Spectroscopy in Biochemistry, In Lakowicz, J. R. (Ed). Vol. III, Plenum Press, New York, pp 231-263, (1992)
  37. Teeter, M. M., Water-protein interaction: the theory and experiment. Annu. Rev. Biophys. Biophys. Chem., 20, 577-600 (1991) https://doi.org/10.1146/annurev.bb.20.060191.003045
  38. Yun, I., Cho, E. S., Jang, H. O., Kim, U. K., Choi, C. H., Chung, I. K., Kim, I. S., and Wood, W. G., Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. Biochim. Biophys. Acta, 1564, 123-132 (2002) https://doi.org/10.1016/S0005-2736(02)00409-1
  39. Yun, I. and Kang, J.-S., The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol. Cells, 1, 15-20 (1990)
  40. Yun, I., Kim, Y.-S., Yu, S.-H., Chung, I.-K., Kim, I.-S., Baik, S.- W., Cho, G.-J., Chung, Y.-Z., Kim, S.-H., and Kang, J.-S., Comparision of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch. Pharm. Res., 13, 325-329 (1990) https://doi.org/10.1007/BF02858167
  41. Yun, I., Lee, S.-H., and Kang, J.-S., Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J. Membr. Biol., 138, 221-227 (1994) https://doi.org/10.1007/BF00232794
  42. Yun, I., Yang, M.-S., Kim, I.-S., and Kang, J.-S., Bulk vs. transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J. Pharmacol., 8, 9-16 (1993)
  43. Zachariasse, K. A., Vaz, W. L. C., Stomayer, C., and Kuhnle, W., Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim. Biophys. Acta, 688, 323-332 (1982) https://doi.org/10.1016/0005-2736(82)90343-1