E. coli lipopolysaccharides로 유도된 사람 호중구에서 CD14, Toll-like receptors, cytoskeletal inhibitors 그리고 $NF-{\kappa}B$ inhibitor가 MMP-8 분비에 미치는 영향

Effect of CD14, Toll-like receptors, cytoskeletal inhibitors and $NF-{\kappa}B$ inhibitor on MMP-8 release from human neutrophils induced by E. coli lipopolysaccharides.

  • 양승민 (서울대학교 치과대학 치주과학교실, 성균관대학교 의과대학 치과학교실, 삼성서울병원 치과진료부 치주과) ;
  • 김태일 (서울대학교 치과대학 치주과학교실) ;
  • 설양조 (서울대학교 치과대학 치주과학교실) ;
  • 이용무 (서울대학교 치과대학 치주과학교실) ;
  • 구영 (서울대학교 치과대학 치주과학교실) ;
  • 정종평 (서울대학교 치과대학 치주과학교실) ;
  • 한수부 (서울대학교 치과대학 치주과학교실) ;
  • 류인철 (서울대학교 치과대학 치주과학교실)
  • Yang, Seung-Min (Department of Periodontology, School of Dentistry, Seoul National University, Department of Dentistry, School of Medicine, Sungkyunkwan University, Department of Periodontics, The institute of Oral Health Science, Samsung Medical Center) ;
  • Kim, Tae-Il (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Seol, Yang-Jo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Lee, Yong-Moo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Ku, Young (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Chung, Chong-Pyoung (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Han, Soo-Boo (Department of Periodontology, School of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, School of Dentistry, Seoul National University)
  • 발행 : 2005.06.30

초록

Objective: MMP-8 is a neutrophil enzyme and its level increases in some inflammatory diseases, including periodontal disease. We knew that the lipopolysaccharide of E.coli(E-LPS) induced MMP-8 release from human neutrophils. E-LPS is known to induce the production and release of inflammatory cytokines through CD14, Toll-like receptor(TLR). In the present study, we investigated whether MMP-8 release by E-LPS is induced via CD14-TLR pathway and the cellular mechanism of MMP-8 release in human neutrophils. Material and methods: Human neutrophils were isolated from the peripheral blood of healthy donors and pre-incubated in medium containing antibodies against CD14, anti-TLR2 and anti-TLR4 or several inhibitors of microtubules and microfilaments and then incubated with E-LPS. The cells were treated TPCK and E-LPS simultaneously. The MMP-8amount in the culture medium was determined using ELISA. Results: E-LPS increased MMP-8release from neutrophils and its induction was inhibited by anti-CD14 and anti-TLR4 but not by anti-TLR2 antibodies. The inhibitors of microtubule and microfilament polymerization significantly decreased E-LPS-induced MMP-8release. TPCK inhibited E-LPS-induced MMP-8 release. Conclusion: These results suggest that MMP-8 release is induced by E-LPS via the CD14-TLR4 signal pathway in human neutrophils and may be depedent on microtubule and microfilament systems and $NF-{\kappa}B$ pathway.

키워드

참고문헌

  1. Snyderman R. Periodontal disease: a model for the study of inflammation. J Infect Dis 1971;123(6):676-7 https://doi.org/10.1093/infdis/123.6.676
  2. Page Re. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res: 1991. p. 230-42
  3. Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog 1995:78 (Pt 1):1934
  4. Genco RJ. Host responses in periodontal diseases: current concepts. J Periodontol 1992:63(4 Suppl):338-55 https://doi.org/10.1902/jop.1992.63.4s.338
  5. Wilton JM. The role of the polymorphonuclear leukocyte in the control of subgingival plaque formation. J Periodontal Res 1982;17(5):506-8 https://doi.org/10.1111/j.1600-0765.1982.tb02040.x
  6. Smith JA. Neutrophile, host defense. and inflammation: a double-edged sword. J Leukoc Biol 1994:56(6):672-86
  7. Dixon DR. Bainbridge BW, Darveau RP. Modulation of the innate immune response within the periodontium. Periodontol 2000 2004;35:53-74 https://doi.org/10.1111/j.0906-6713.2004.003556.x
  8. Birkedal-Hansen H. Moore WG. Bodden MK. Windsor LJ. Birkedal-Hansen B. DeCarlo A, et al. Matrix metallopro- tei-nases a review. Crit Rev Oral Biol Med 1993;4(2):197-250
  9. Petersen SV. Thiel S. Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 2001:38(2-3): 133-49 https://doi.org/10.1016/S0161-5890(01)00038-4
  10. Turner MW. Hamvas RM. Mannosebinding lectin: structure. function. genetics and disease associations. Rev Immunogenet 2000;2(3):305-22
  11. Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13(1):11-6 https://doi.org/10.1016/0167-5699(92)90198-G
  12. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9(1):4-9 https://doi.org/10.1016/S0952-7915(97)80152-5
  13. Morrison DC, Duncan RL, Jr., Goodman SA In vivo biological activities of endotoxin. Prog Clin Biol Res 1985;189:81-99
  14. Morrison DC, Ulevitch RJ. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol 1978;93(2):526-617
  15. Maidwell-Smith M, Wilson M, Kieser JB. Lipopolysaccharide (endotoxin) from individual periodontally involved teeth. J Clin Periodontol 1987;14(8):453-6 https://doi.org/10.1111/j.1600-051X.1987.tb02250.x
  16. Shapiro L, Lodato FM, Jr., Courant PR, Stallard RE. Endotoxin determinations in gingival inflammation. J Periodontol 1972;43(10):591-6 https://doi.org/10.1902/jop.1972.43.10.591
  17. Simon BI. Goldman HM, Ruben MP, Baker E. The role of endotoxin in periodontal disease. I. A reproducible, quantitative method for determining the amount of endotoxin in human gingival exudate. J Periodontol 1969:40(12):695-701 https://doi.org/10.1902/jop.1969.40.12.695
  18. Sugawara S, Arakaki R, Rikiishi H, Takada H. Lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner. Infect Immun 1999;67(4):162-332
  19. Uehara A Sugawara S, Tamai R, Takada H. Contrasting responses of hurnan gingival and colonic epithelial cells to lip- opolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med Microbiol Immunol (Berl) 2001;189(4):185-92 https://doi.org/10.1007/s004300100063
  20. Akashi S. Nagai Y. Ogata H. Oikawa M. Fukase K, Kusumoto S, et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 2001;13(12):1595-9 https://doi.org/10.1093/intimm/13.12.1595
  21. Shapira L. Takashiba S. Amar S. Van Dyke TE. Porphyromonas gingivalis lipopolysaccharide stimulation of human monocytes: dependence on serum and CD14 receptor. Oral Microbiol Immunol 1994;9(2):112-7 https://doi.org/10.1111/j.1399-302X.1994.tb00044.x
  22. Sharp L. Poole S. Reddi K. Fletcher J. Nair S, Wilson M. et al. A lipid A-associated protein of Porphyromonas gingi-valis. derived from the haemagglutinating domain of the RI protease gene family, is a potent stimulator of interleukin 6 synthesis. Microbiology 1998;144 (Pt 11):3019-26 https://doi.org/10.1099/00221287-144-11-3019
  23. Takeuchi O, Takeda K. Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-de- pendent signaling cascades. Int Immunol 2000;12(1):113-7 https://doi.org/10.1093/intimm/12.1.113
  24. Watanabe A, Takeshita A, Kitano S, Hanazawa S. CD14-mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Infect Immun 1996;64(11):4488-94
  25. Boeker U, Yezerskyy O, Feick P, Manigold T, Panja A, Kalina U, et al. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 2003;18(1):25-32 https://doi.org/10.1007/s00384-002-0415-6
  26. Latz E. Visintin A, Lien E, Fitzgerald KA, Espevik T, Golenbock DT. The LPS receptor generates inflammatory signals from the cell surface. J Endotoxin Res 2003;9(6):375-80
  27. Schroder NW. Opitz B. Lamping N. :Michelsen KS, Zahringer U, Gobel UB, et al. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponemaglycolipids. J Immunol 2000;165(5):2683-93
  28. Sugita N, Kimura A, Matsuki Y, Yamamoto T, Yoshie H, Hara K. Activation of transcription factors and IL-8 expression in neutrophils stimulated with lipopolysaccharide from Porphyromonas gingivalis. Inflammation 1998;22(3):253-267 https://doi.org/10.1023/A:1022344031223
  29. Medzhitov R. Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640):394-397 https://doi.org/10.1038/41131
  30. da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem 2001;276(24):21129-35 https://doi.org/10.1074/jbc.M009164200
  31. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-pesi-tive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163(1):1-5
  32. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282(5396):2085-8 https://doi.org/10.1126/science.282.5396.2085
  33. Kido J, Kido R, Suryono, Kataoka M, Fagerhol MK, Nagata T. Calprotectin release from human neutrophils is induced by Porphyromonas gingivalis lipopolysaccharide via the CD-14-Toll-like receptor-nuclear factor kappaB pathway. J Periodontal Res 2003;38(6):557-63 https://doi.org/10.1034/j.1600-0765.2003.00691.x
  34. Fan J. Malik AB. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat Med 2003;9(3):315-21 https://doi.org/10.1038/nm832
  35. Frendeus B. Wachtler C. Hedlund M. Fischer H. Samuelsson P. Svensson M. et al. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 2001;40(1):37-51 https://doi.org/10.1046/j.1365-2958.2001.02361.x
  36. Toshchakov V, Jones BW, Lentschat A, Silva A, Perera PY, Thomas K, et al. TLR2 and TLR4 agonists stimulate unique repertoires of host resistance genes in murine macrophages: interferon-beta -dependent signaling in TLR4-mediated responses. J Endotoxin Res 2003:9(3):169-75
  37. Calkins CM. Barsness K. Bensard DD, Vasquez-Torres A, Raeburn CD, Meng X, et al. Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to grampositive bacterial enterotoxin, J Surg Res 2002;104(2);124-30 https://doi.org/10.1006/jsre.2002.6422
  38. Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000 2003;31:55-76 https://doi.org/10.1034/j.1600-0757.2003.03105.x
  39. Isowa N, Keshavjee SH, Liu M. Role of microtubules in LPS-induced macrophage inflammatory protein-2 production from rat pneumocytes. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L1075-82
  40. Isowa N. Xavier AM, Dziak E, Opas M, McRitchie DI, Slutsky AS. et al. LPS-induced depolymerization of cytoskeleton and its role in TNF-alpha production by rat pneumocytes. Am J Physiol 1999;277(3 Pt 1):L606-15