DOI QR코드

DOI QR Code

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo (Department of Civil Engineering, Zhejiang University) ;
  • Chen, Yun-Min (Department of Civil Engineering, Zhejiang University) ;
  • Ding, Hao-Jiang (Department of Civil Engineering, Zhejiang University)
  • 투고 : 2005.04.08
  • 심사 : 2005.07.25
  • 발행 : 2005.09.25

초록

This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Chee, C. Y. K., Tong, L. and Steven, G. P. (1998), "A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures", J. Intell. Mater. Syst. Struct., 9(1), 3-19. https://doi.org/10.1177/1045389X9800900101
  2. Cowper, G. R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., ASME, 33(2), 335-340. https://doi.org/10.1115/1.3625046
  3. Ding, H. J., Wang, G. Q. and Chen, W. Q. (1997), "Green's functions for a two-phase infinite piezoelectric plane", Proc. of Royal Society of London (A), 453(1966/8), 2241-2257. https://doi.org/10.1098/rspa.1997.0120
  4. Ding, H. J., Chen, W. Q. and Xu, R. Q. (2000), "New state space formulations for transversely isotropic piezoelasticity with application", Mech. Res. Commun., 27(3), 319-326. https://doi.org/10.1016/S0093-6413(00)00098-7
  5. Fernandes, A. and Pouget, J. (2003), "Analytical and numerical approaches to piezoelectric bimorph", Int. J. Solids Struct., 40(17), 4331-4352. https://doi.org/10.1016/S0020-7683(03)00222-1
  6. Gere, J. M. and Timoshenko, S. P. (1984), Mechanics of Materials, 2nd Ed., PWS-KENT Publishing Company, Boston.
  7. Gopinathan, S.V., Varadan, V.V. and Varadan, V.K. (2000), "A review and critique of theories for piezoeletric laminates", Smart Mater. Struct., 9(1), 24-48. https://doi.org/10.1088/0964-1726/9/1/304
  8. Ha, S. K. and Kim, Y. H. (2002), "Analysis of a piezoelectric multi-morph in extentional and flexural motions", J. Sound Vib., 253(5), 1001-1014. https://doi.org/10.1006/jsvi.2001.4040
  9. He, L.-H., Lim, C. W. and Soh, A. K. (2000), "Three-dimensional analysis of an antiparallel piezoelectric bimorph", Acta Mech., 145(1-4), 189-204. https://doi.org/10.1007/BF01453652
  10. Hwang, W. S. and Park, H. C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
  11. Kapuria, S. (2001), "An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers", Int. J. Solids Struct., 38 (50-51), 9179-9199. https://doi.org/10.1016/S0020-7683(01)00112-3
  12. Lee, J. S. and Jiang, L. Z. (1996), "Exact electroelastic analysis of piezoelectric laminae via state space approach", Int. J. Solids Struct., 33(7), 977-990. https://doi.org/10.1016/0020-7683(95)00083-6
  13. Lim, C. W., He, L-H. and Soh, A. K. (2001), "Three-dimensional electromechanical responses of a parallel piezoelectric bimorph", Int. J. Solids Struct., 38(16), 2833-2849. https://doi.org/10.1016/S0020-7683(00)00186-4
  14. Mindlin, R. D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
  15. Rao, S. S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., ASME, 47(4), 113-123. https://doi.org/10.1115/1.3111074
  16. Saravanos, D. A. and Heyliger, P. R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates and shells", Appl. Mech. Rev., ASME, 52(10), 305-320.
  17. Smits, J. G., Dalke, S. I. and Cooney, T. K. (1991), "The constituent equations of piezoelectric bimorphs", Sens. Actuators A Phys., 28(1), 41-61. https://doi.org/10.1016/0924-4247(91)80007-C
  18. Sosa, H. A. and Castro, M. A. (1993), "Electroelastic analysis of piezoelectric laminated structures", Appl. Mech. Rev., ASME, 46(11/2), 21-28. https://doi.org/10.1115/1.3122639
  19. Steel, M. R., Harrison, F. and Harper, P. G. (1978), "The piezoelectric bimorph: an experimental and theoretical study of its quasistatic response", J. Phys. D., 11(6), 979-989. https://doi.org/10.1088/0022-3727/11/6/017
  20. Tarn, J. Q. (2002), "A state space formalism for piezothermoelasticity", Int. J. Solids Struct., 39(20), 5173-5184. https://doi.org/10.1016/S0020-7683(02)00413-4
  21. Timoshenko, S. P. (1922), "On the transverse vibrations of bars of uniform cross section", Phil. Mag., 43(6), 125-131. https://doi.org/10.1080/14786442208633855
  22. Tzou, H. S. and Tiersten, H. F. (1994), "Elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric actuators", Smart Mater. Struct., 3(3), 255-265. https://doi.org/10.1088/0964-1726/3/3/001
  23. Wang, Q and Quek, S. T. (2000), "Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator", Smart Mater. Struct., 9(1), 103-109. https://doi.org/10.1088/0964-1726/9/1/311
  24. Wang, S. Y. (2004), "A finite element model for the static and dynamic analysis of a piezoelectric bimorph", Int. J. Solids Struct., 41(15), 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058
  25. Zhou, Y. G. and Chen, Y. M. (2005), "Influence of seismic cyclic loading history on small strain shear modulus of saturated sands", Soil Dyn. Earthq. Eng., 25(5), 341-353. https://doi.org/10.1016/j.soildyn.2005.03.001

피인용 문헌

  1. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils vol.9, pp.11, 2008, https://doi.org/10.1631/jzus.A0820323
  2. An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element vol.12, pp.1, 2015, https://doi.org/10.1590/1679-78251401
  3. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground vol.52, pp.7, 2009, https://doi.org/10.1007/s11431-009-0198-x
  4. Laboratory Investigation on Assessing Liquefaction Resistance of Sandy Soils by Shear Wave Velocity vol.133, pp.8, 2007, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(959)
  5. Verification of the Soil-Type Specific Correlation between Liquefaction Resistance and Shear-Wave Velocity of Sand by Dynamic Centrifuge Test vol.136, pp.1, 2010, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000193
  6. 3D symplectic expansion for piezoelectric media vol.74, pp.12, 2008, https://doi.org/10.1002/nme.2238
  7. A locking-free coupled polynomial Timoshenko piezoelectric beam finite element vol.32, pp.5, 2015, https://doi.org/10.1108/EC-09-2013-0218
  8. Active shape control of a cantilever by resistively interconnected piezoelectric patches vol.12, pp.5, 2013, https://doi.org/10.12989/sss.2013.12.5.501
  9. A numerically accurate and efficient coupled polynomial field interpolation for Euler–Bernoulli piezoelectric beam finite element with induced potential effect vol.26, pp.12, 2015, https://doi.org/10.1177/1045389X14544149
  10. Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads vol.223, pp.9, 2012, https://doi.org/10.1007/s00707-012-0686-0
  11. Analytical modeling of sandwich beam for piezoelectric bender elements vol.28, pp.12, 2007, https://doi.org/10.1007/s10483-007-1204-z
  12. Modeling of sensor function for piezoelectric bender elements vol.9, pp.1, 2008, https://doi.org/10.1631/jzus.A071544
  13. Stochastic Evaluation and Analysis of Free Vibrations in Simply Supported Piezoelectric Bimorphs vol.80, pp.2, 2013, https://doi.org/10.1115/1.4007721
  14. Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes vol.5, pp.5, 2009, https://doi.org/10.12989/sss.2009.5.5.547
  15. Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance vol.7, pp.5, 2005, https://doi.org/10.12989/sss.2011.7.5.417
  16. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  17. Closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester under a fluid vortex vol.54, pp.20, 2005, https://doi.org/10.1016/j.ifacol.2021.11.176
  18. Closed-Form Solutions of Bending-Torsion Coupled Forced Vibrations of a Piezoelectric Energy Harvester Under a Fluid Vortex vol.144, pp.2, 2022, https://doi.org/10.1115/1.4051773