Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Chee, C. Y. K., Tong, L. and Steven, G. P. (1998), "A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures", J. Intell. Mater. Syst. Struct., 9(1), 3-19. https://doi.org/10.1177/1045389X9800900101
- Cowper, G. R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., ASME, 33(2), 335-340. https://doi.org/10.1115/1.3625046
- Ding, H. J., Wang, G. Q. and Chen, W. Q. (1997), "Green's functions for a two-phase infinite piezoelectric plane", Proc. of Royal Society of London (A), 453(1966/8), 2241-2257. https://doi.org/10.1098/rspa.1997.0120
- Ding, H. J., Chen, W. Q. and Xu, R. Q. (2000), "New state space formulations for transversely isotropic piezoelasticity with application", Mech. Res. Commun., 27(3), 319-326. https://doi.org/10.1016/S0093-6413(00)00098-7
- Fernandes, A. and Pouget, J. (2003), "Analytical and numerical approaches to piezoelectric bimorph", Int. J. Solids Struct., 40(17), 4331-4352. https://doi.org/10.1016/S0020-7683(03)00222-1
- Gere, J. M. and Timoshenko, S. P. (1984), Mechanics of Materials, 2nd Ed., PWS-KENT Publishing Company, Boston.
- Gopinathan, S.V., Varadan, V.V. and Varadan, V.K. (2000), "A review and critique of theories for piezoeletric laminates", Smart Mater. Struct., 9(1), 24-48. https://doi.org/10.1088/0964-1726/9/1/304
- Ha, S. K. and Kim, Y. H. (2002), "Analysis of a piezoelectric multi-morph in extentional and flexural motions", J. Sound Vib., 253(5), 1001-1014. https://doi.org/10.1006/jsvi.2001.4040
- He, L.-H., Lim, C. W. and Soh, A. K. (2000), "Three-dimensional analysis of an antiparallel piezoelectric bimorph", Acta Mech., 145(1-4), 189-204. https://doi.org/10.1007/BF01453652
- Hwang, W. S. and Park, H. C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
- Kapuria, S. (2001), "An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers", Int. J. Solids Struct., 38 (50-51), 9179-9199. https://doi.org/10.1016/S0020-7683(01)00112-3
- Lee, J. S. and Jiang, L. Z. (1996), "Exact electroelastic analysis of piezoelectric laminae via state space approach", Int. J. Solids Struct., 33(7), 977-990. https://doi.org/10.1016/0020-7683(95)00083-6
- Lim, C. W., He, L-H. and Soh, A. K. (2001), "Three-dimensional electromechanical responses of a parallel piezoelectric bimorph", Int. J. Solids Struct., 38(16), 2833-2849. https://doi.org/10.1016/S0020-7683(00)00186-4
- Mindlin, R. D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
- Rao, S. S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., ASME, 47(4), 113-123. https://doi.org/10.1115/1.3111074
- Saravanos, D. A. and Heyliger, P. R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates and shells", Appl. Mech. Rev., ASME, 52(10), 305-320.
- Smits, J. G., Dalke, S. I. and Cooney, T. K. (1991), "The constituent equations of piezoelectric bimorphs", Sens. Actuators A Phys., 28(1), 41-61. https://doi.org/10.1016/0924-4247(91)80007-C
- Sosa, H. A. and Castro, M. A. (1993), "Electroelastic analysis of piezoelectric laminated structures", Appl. Mech. Rev., ASME, 46(11/2), 21-28. https://doi.org/10.1115/1.3122639
- Steel, M. R., Harrison, F. and Harper, P. G. (1978), "The piezoelectric bimorph: an experimental and theoretical study of its quasistatic response", J. Phys. D., 11(6), 979-989. https://doi.org/10.1088/0022-3727/11/6/017
- Tarn, J. Q. (2002), "A state space formalism for piezothermoelasticity", Int. J. Solids Struct., 39(20), 5173-5184. https://doi.org/10.1016/S0020-7683(02)00413-4
- Timoshenko, S. P. (1922), "On the transverse vibrations of bars of uniform cross section", Phil. Mag., 43(6), 125-131. https://doi.org/10.1080/14786442208633855
- Tzou, H. S. and Tiersten, H. F. (1994), "Elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric actuators", Smart Mater. Struct., 3(3), 255-265. https://doi.org/10.1088/0964-1726/3/3/001
- Wang, Q and Quek, S. T. (2000), "Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator", Smart Mater. Struct., 9(1), 103-109. https://doi.org/10.1088/0964-1726/9/1/311
- Wang, S. Y. (2004), "A finite element model for the static and dynamic analysis of a piezoelectric bimorph", Int. J. Solids Struct., 41(15), 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058
- Zhou, Y. G. and Chen, Y. M. (2005), "Influence of seismic cyclic loading history on small strain shear modulus of saturated sands", Soil Dyn. Earthq. Eng., 25(5), 341-353. https://doi.org/10.1016/j.soildyn.2005.03.001
Cited by
- Surface-mounted bender elements for measuring horizontal shear wave velocity of soils vol.9, pp.11, 2008, https://doi.org/10.1631/jzus.A0820323
- An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element vol.12, pp.1, 2015, https://doi.org/10.1590/1679-78251401
- Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground vol.52, pp.7, 2009, https://doi.org/10.1007/s11431-009-0198-x
- Laboratory Investigation on Assessing Liquefaction Resistance of Sandy Soils by Shear Wave Velocity vol.133, pp.8, 2007, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(959)
- Verification of the Soil-Type Specific Correlation between Liquefaction Resistance and Shear-Wave Velocity of Sand by Dynamic Centrifuge Test vol.136, pp.1, 2010, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000193
- 3D symplectic expansion for piezoelectric media vol.74, pp.12, 2008, https://doi.org/10.1002/nme.2238
- A locking-free coupled polynomial Timoshenko piezoelectric beam finite element vol.32, pp.5, 2015, https://doi.org/10.1108/EC-09-2013-0218
- Active shape control of a cantilever by resistively interconnected piezoelectric patches vol.12, pp.5, 2013, https://doi.org/10.12989/sss.2013.12.5.501
- A numerically accurate and efficient coupled polynomial field interpolation for Euler–Bernoulli piezoelectric beam finite element with induced potential effect vol.26, pp.12, 2015, https://doi.org/10.1177/1045389X14544149
- Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads vol.223, pp.9, 2012, https://doi.org/10.1007/s00707-012-0686-0
- Analytical modeling of sandwich beam for piezoelectric bender elements vol.28, pp.12, 2007, https://doi.org/10.1007/s10483-007-1204-z
- Modeling of sensor function for piezoelectric bender elements vol.9, pp.1, 2008, https://doi.org/10.1631/jzus.A071544
- Stochastic Evaluation and Analysis of Free Vibrations in Simply Supported Piezoelectric Bimorphs vol.80, pp.2, 2013, https://doi.org/10.1115/1.4007721
- Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes vol.5, pp.5, 2009, https://doi.org/10.12989/sss.2009.5.5.547
- Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance vol.7, pp.5, 2005, https://doi.org/10.12989/sss.2011.7.5.417
- Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
- Closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester under a fluid vortex vol.54, pp.20, 2005, https://doi.org/10.1016/j.ifacol.2021.11.176
- Closed-Form Solutions of Bending-Torsion Coupled Forced Vibrations of a Piezoelectric Energy Harvester Under a Fluid Vortex vol.144, pp.2, 2022, https://doi.org/10.1115/1.4051773