DOI QR코드

DOI QR Code

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C. (Interdisciplinary Programme in Systems and Control Engineering, Indian Institute of Technology Bombay) ;
  • Bandyopadhyay, B. (Systems and Control Engineering, I.I.T. Bombay)
  • Received : 2004.12.01
  • Accepted : 2005.04.26
  • Published : 2005.09.25

Abstract

This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

Keywords

References

  1. Aldraihem, O. J., Wetherhold, R. C. and Singh, T. (1997), "Distributed control of laminated beams: Timoshenko vs. Euler-Bernoulli Theory", J. Intelligent Mater. Syst. and Struct., 8, 149-157. https://doi.org/10.1177/1045389X9700800205
  2. Abramovich, H. (1998), "Deflection control of laminated composite beam with piezoceramic layers-closed form solution", Compo. Struct., 43(3), 217-131. https://doi.org/10.1016/S0263-8223(98)00104-4
  3. Aldraihem, O. J. and Khdeir Ahmed, A. (2000), "Smart beams with extension and thickness-shear piezoelectric actuators", Smart Mat. and Struct., 9(1), 1-9. https://doi.org/10.1088/0964-1726/9/1/301
  4. Ahmed, A. K. and Osama, J. A. (2001), "Deflection analysis of beams with extension and shear piezoelectric patches using discontinuity functions", Smart Mater. and Struct., 10(1), 212-220. https://doi.org/10.1088/0964-1726/10/2/306
  5. Azulay, L. E. and Abramovich, H. (2004), "Piezoelectric actuation and sensing mechanisms - Closed form solutions", Compo. Struct., 64(3-4), 443-453. https://doi.org/10.1016/j.compstruct.2003.09.045
  6. Baily, T. and Hubbard Jr., J. E. (1985), "Distributed piezoelectric polymer active vibration control of a cantilever beam", J. Guidance, Control and Dyn., 8(5), 605-611. https://doi.org/10.2514/3.20029
  7. Benjeddou, A., Trindade, M. A. and Ohayon, R. (1999), "New shear actuated smart structure beam finite element", AIAA J., 37, 378-383. https://doi.org/10.2514/2.719
  8. Crawley, E. F. and De Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25, 1373-1385. https://doi.org/10.2514/3.9792
  9. Chandrashekhara, K. and Varadarajan, S. (1997), "Adaptive shape control of composite beams with piezoelectric actuators", J. Intelligent Mater. Sys. and Struct., 8, 112-124. https://doi.org/10.1177/1045389X9700800202
  10. Culshaw, B. (1992), "Smart structure a concept or a reality", J. of Systems and Control Eng., 26(206), 1-8.
  11. Cooper, C. R. (1966), "Shear coefficient in Timoshenko beam theory", ASME J. of Applied Mechanics, 33, 335-340. https://doi.org/10.1115/1.3625046
  12. Choi, S. B., Cheong, C. and Kini, S. (1995), "Control of flexible structures by distributed piezo-film actuators and sensors", J. Intelligent Mater. and Struct., 16, 430-435.
  13. Doschner, C., and Enzmann, M. (1998), "On model based controller design for smart structure", Smart Mechanical Systems Adaptronics SAE International USA, 157-166.
  14. Donthireddy, P. and Chandrashekhara, K. (1996), "Modeling and shape control of composite beam with embedded piezoelectric actuators", Compo. Struct., 35(2), 237-244. https://doi.org/10.1016/0263-8223(96)00041-4
  15. Fanson, J. L. and Caughey, T. K. (1990), "Positive position feedback control for structures," AIAA J., 18(4), 717-723.
  16. Friedman, Z. and Kosmataka, J. B. (1993), "An improved two-node Timoshenko beam finite element", Comput. and Struct., 47(3), 473-481. https://doi.org/10.1016/0045-7949(93)90243-7
  17. Hanagud, S., Obal, M. W. and Callise, A. J. (1992), "Optimal vibration control by the use of piezoceramic sensors and actuators", J. Guidance, Control and Dyn., 15(5), 1199-1206. https://doi.org/10.2514/3.20969
  18. Hwang, W. and Park H. C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
  19. Manjunath, T. C. and Bandyopadhyay, B (2004), "Vibration control of smart flexible cantilever beam using periodic output feedback", Asian J. Control, 6, 74-87.
  20. Raja, S., Prathap, G. and Sinha, P. K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators", Smart Mater. and Struct., 11(1), 63-71. https://doi.org/10.1088/0964-1726/11/1/307
  21. Sun, C. T. and Zhang, X. D. (1995), "Use of thickness-shear mode in adaptive sandwich structures", Smart Mater. and Struct., 4(3), 202-206. https://doi.org/10.1088/0964-1726/4/3/007
  22. Syrmos, V. L., Abdallah, P., Dorato, P. and Grigoriadis, K. (1997) "Static output feedback a survey", Automatica, 33(2), 125-137. https://doi.org/10.1016/S0005-1098(96)00141-0
  23. Thomas, J. and Abbas, B. A. H. (1975), "Finite element methods for dynamic analysis of timoshenko beam", J. Sound Vib., 41, 291-299. https://doi.org/10.1016/S0022-460X(75)80176-3
  24. Umapathy, M. and Bandyopadhyay, B. (2000), "Vibration control of flexible beam through smart structure concept using periodic output feedback", J. Sys. Sci., 26(1), 23-46.
  25. Werner, H. and Furuta, K. (1995), "Simultaneous stabilization based on output measurements", Kybernetika, 31(4), 395-411.
  26. Werner, H., (1998), "Multimodal robust control by fast output sampling - An LMI approach", Automatica, 34(12), 1625-1630. https://doi.org/10.1016/S0005-1098(98)80018-6
  27. Cao, Yong-Yan, Lam, J. and Sun, Y. X. (1998), "Static output feedback stabilization: An LMI approach", Automatica, 34(12), 1641-1645. https://doi.org/10.1016/S0005-1098(98)80021-6
  28. Zhang, X. D. and Sun, C. T. (1996), "Formulation of an adaptive sandwich beam", Smart Mater. and Struct., 5(6), 814-823. https://doi.org/10.1088/0964-1726/5/6/012

Cited by

  1. Functionally upgraded passive devices for seismic response reduction vol.4, pp.6, 2008, https://doi.org/10.12989/sss.2008.4.6.741
  2. Parametric modeling and FPGA based real time active vibration control of a piezoelectric laminate cantilever beam at resonance vol.21, pp.14, 2015, https://doi.org/10.1177/1077546313518818
  3. Design and development of a model free robust controller for active control of dominant flexural modes of vibrations in a smart system vol.355, 2015, https://doi.org/10.1016/j.jsv.2015.05.006
  4. Modeling and design of field programmable gate array based real time robust controller for active control of vibrating smart system vol.345, 2015, https://doi.org/10.1016/j.jsv.2015.02.002
  5. Improving wing aeroelastic characteristics using periodic design vol.4, pp.4, 2017, https://doi.org/10.12989/aas.2017.4.4.353
  6. Modeling of low frequency dynamics of a smart system and its state feedback based active control vol.99, pp.None, 2005, https://doi.org/10.1016/j.ymssp.2017.07.018
  7. Use of smart intelligent sensor & actuator mechanical materials (PVDF / PZT) in developing MIMO mathematical model of the smart structure and its use to control the active vibrations using discret vol.37, pp.p2, 2005, https://doi.org/10.1016/j.matpr.2020.07.163