DOI QR코드

DOI QR Code

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian (Department of Mechanical and Aerospace Engineering, University of California) ;
  • Shkel, Andrei (Department of Mechanical and Aerospace Engineering, University of California)
  • Received : 2004.05.19
  • Accepted : 2004.12.30
  • Published : 2005.01.25

Abstract

This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Aktan, A., Tsikos, C. J., Catbas, F. N., Grimmelsman, K. and Barrish, R. (1999), "Challenges and opportunities in bridge health monitoring", Proceedings of the Second International Workshop on Structural Heal Monitoring, Edited by F.-K. Chang.
  2. Atherton, P. D., Reay, N. K., Ring, J. and Hicks, T. R. (1981), "Tunable Fabry-Perot filters", Optical Engineering 20(6), 806-814.
  3. Bartek, M., Correia, J. H. and Wolffenbuttel, R. F. (1999), "Silver-based reflective coatings for micromachined optical filters", J. Micromechanics and Microengineering 9(2), 162-165. https://doi.org/10.1088/0960-1317/9/2/314
  4. Born, M. and Wolf, E. (1999), Princples of Optics (7th ed.). Pergamon, London.
  5. Bovard, B. G. (1990, January), "Rugate filter design: the modified fourier transform", Applied Optics, 29(1), 24-30. https://doi.org/10.1364/AO.29.000024
  6. Choqueta, P. and Juneaua, F. (2000), "New generation of Fabry-Perot fiber optic sensors for monitoring of structures", Proceedings of SPIE's 7th Annual International Symposium on Smart Structures and Materials.
  7. Chong, K. P. (1997), "Health monitoring of civil infrastructures", Proceedings of the Second International Workshop on Structural Heal Monitoring, Edited by F.-K. Chang.
  8. Cooper, E. B. and Post, E. R. (2000), "High-resolution micromachined interferometric accelerometer", Applied Physics Letters, 76(22), 3316-3318. https://doi.org/10.1063/1.126637
  9. Cristea, D., Kusko, M., Tibeica, C., Muller, R., Manea, E. and Syvridis, D. (2004), "Design and experiments for tunable optical sensor fabrication using (111)-oriented silicon micromachining", Sensors and Actuators APhysical, 113(3), 312-318. https://doi.org/10.1016/j.sna.2004.01.028
  10. Fabry, C. and Perot, A. (1899), "Theorie et applications d'une nouvelle methode de spectroscopie interférentielle", Ann. Chim Phys. Paris 16, 115-144.
  11. Gerges, A. S. and Newson, T. P. (1989a), "High-sensitivity fiber-optic accelerometer", Optics Letters, 14(4), 251-253. https://doi.org/10.1364/OL.14.000251
  12. Gerges, A. S. and Newson, T. P. (1989b), "Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations", Optics Letters 14(20), 1155-1157.
  13. Goff, D. R. (1999). Fiber Optic Reference Guide, Focal Press-Boston.
  14. Kartalopoulos, S. V. (2000). Introduction to DWDM Technology: Data in a Rainbow. IEEE Press, New York.
  15. Macleod, H. A. (2001), Thin-Film Optical Filters (3ed.). Institute of Physics Publishing, Bristol-Philadelphia.
  16. Nussbaum, A. and Phillips, R. A. (1976), Contemporary Optics for Scientists and Engineers. Prentice-Hall, Inc.
  17. Patterson, J. D. (1997, September), Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Phd, University of Colorado, Boulder.
  18. Perez, M. A. and Shkel, A. M. (2004), "On serializing Fabry-Perot micro-accelerometers", The 1st International Workshop on Advanced Smart Materials and Smart Structures Technology, pp. 276-283.
  19. Raley, N. F., Ciarlo, D., Koo, J. C., Trujillo, J., Yu, C., Loomis, G. and Chow, R. (1992), "A Fabry-Perot microinterferometer for visible wavelengths", IEEE Solid-State Sensor and Actuator Workshop, 5th Technical Digest, 170-173.
  20. Solus-Micro-Technologies (2002), "New tunable filters use compliant mems technology to deliver superior performance at lower cost in optical networking applications", Internet Press Release. URL: http://www.solustech.com/news_events/press_room/Mar_11_02.htm.
  21. Southwell, W. H. (1989), "Using apodization functions to reduce sidelobes in rugate filters", Applied Optics, 28(23), 5091-5094. https://doi.org/10.1364/AO.28.005091
  22. Stephensa, M. (1993), "A sensitive interferometric accelerometer", Rev., Sci. Instrum. 64(9), 2612-2614. https://doi.org/10.1063/1.1143878
  23. Todd, M., Johnson, G., Vohra, S. T., Chen-Chang, C., Danver, B. and Malsawma, L. (1999), "Civil infrastructure monitoring with fiber bragg grating sensor arrays", Proceedings of the Second International Workshop on Structural Health Monitoring, Edited by F.-K. Chang.
  24. Udd, E. (1990). Fiber Optic Sensors. John Wiley and Sons, Inc.
  25. Vohra, S. T., Danver, B., Tveten, A. and Dandridge, A. (1997), "High performance fiber optic accelerometers", Electronics Letters 33(2), 155-157. https://doi.org/10.1049/el:19970087
  26. Waters, R. L. and Aklufi, M. E. (2002, October), "Micromachined Fabry-Perot interferometer for motion detection", Applied Physics Letters, 81(18), 3320-3322. https://doi.org/10.1063/1.1518557
  27. Winchester, K. J. and Dell, J. M. (2001, September), "Tunable Fabry-Perot cavities fabricated from pecvd silicon nitride employing zinc sulphide as the acrificial layer", J. Micromechanics and Microengineering 11(5), 589-594. https://doi.org/10.1088/0960-1317/11/5/323
  28. Yamakawa, H., Iwaki, H., Mita, A. and Takeda, N. (1999), "Health monitoring of steel structures using fiber bragg grating sensors", Proceedings of the Second International Workshop on Structural Health Monitoring, Edited by F.-K. Chang.
  29. Young, L. (1967), "Multilayer interference filters with narrow stop bands", Applied Optics 6(2), 297-315. https://doi.org/10.1364/AO.6.000297

Cited by

  1. Design and Demonstration of a Bulk Micromachined Fabry–PÉrot $\mu$g-Resolution Accelerometer vol.7, pp.12, 2007, https://doi.org/10.1109/JSEN.2007.909085
  2. Factors affecting the performance of micromachined sensors based on Fabry–Perot interferometry vol.15, pp.9, 2005, https://doi.org/10.1088/0960-1317/15/9/020