DOI QR코드

DOI QR Code

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M. (LAMCE/COPPE/UFRJ, Program of Civil Engineering) ;
  • Alves, Jose L.D. (LAMCE/COPPE/UFRJ, Program of Civil Engineering) ;
  • Ebecken, Nelson F.F. (LAMCE/COPPE/UFRJ, Program of Civil Engineering)
  • 투고 : 2004.12.23
  • 심사 : 2005.09.22
  • 발행 : 2005.10.25

초록

This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.

키워드

참고문헌

  1. Bazant, Z. P. (1976), "Instability, ductility, and size effects in strain-softening concrete", J. Eng. Mech. Div., ASCE, 102(EM2): 331-44; Disc. 103:357-8, 104:505-2.
  2. Bazant, Z. P. (1997), "Scaling of quasi-brittle fracture: hypoteses of invasive and lacunar fractality, their critique and Weilbull connection", Int. J. Fract., 83(1), 41-65. https://doi.org/10.1023/A:1007335506684
  3. Bazant, Z. P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-202. https://doi.org/10.1016/S0013-7944(01)00084-4
  4. Hillerborg, A., Modéer, M. and Petersson, P. E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concr. Res., 6, 773-82. https://doi.org/10.1016/0008-8846(76)90007-7
  5. Carpinteri, A., Chiaia, B. and Ferro, G. (1994) "Multifractal scaling law for the nominal strength variation of concrete structures", Size Effects in Concrete Structures, Mihashi, M., Okamura, H, Bazant, ZP., editors. London E & FN Spon 193-206.
  6. Carpinteri, A., Cornetti, P., Barpi, F. and Valente, S. (2003), "Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory", Eng. Fract. Mech., 70, 1809-1839. https://doi.org/10.1016/S0013-7944(03)00126-7
  7. Cuthill, E. (1972), "Several strategies for reducing the bandwidth of matrices", Sparse Matrices and Their Applications, D. J. Rose and R. A. Willoughby (Eds.), Plenum Press, New York.
  8. Elices, M. and Planas, J. (1989), "Material models", Fracture Mechanics of Concrete Structures, Elfegren L. editor, London: Chapman and Hall 16-66 chaper 3.
  9. Fairbairn, E. M. R., Paz, C. N. M., Ebecken, N. F. F. and Ulm, F-J. (1999), "Use of neural networks for fitting of FE probabilistic scaling model parameters", Int. J. Fract., 95, 315-324. https://doi.org/10.1023/A:1018677023642
  10. Guineas, G. V. Elices, M. and Planas, J. (1994), "A general bilinear fit for the softening curve of concrete", Mater. Struct., 27 99-105. https://doi.org/10.1007/BF02472827
  11. Hu, X. Z. and Wittmann, F. H. (1991), "An analytical method to determine the bridging stress transferred within the fracture process zone", Cement Concrete, 21, 1118-28. https://doi.org/10.1016/0008-8846(91)90072-P
  12. Hughes, T. J. R. (1987), "Algorithms for parabolic problems, element-by-element (EBE) implicit methods", The Finite Element Method Analysis, Chapter 8, 483-489, New Jersey: Prentice-Hall.
  13. Kelley, C. T. (1995), "Iterative methods for linear and nonlinear equations, frontiers in applied mathematics", SIAM, Society for Industrial and Applied Mathematics, Philadelphia.
  14. Mihashi, H., Nomura, N., Izumi, M. and Wittmann, F. H. (1991) "Size dependence of fracture energy of concrete", Fracture Process in Concrete Rocks and Ceramics, van Mier, Rost, Bakker, editors. 441-50.
  15. Paz, C. N. M., Martha, L. F., Alves, J. L. D., Fairbairn, E. M. R., Ebecken, N. F. F. and Coutinho, A. L. G. A. (2002a), "Parallel implementation and development of a probabilistic model for 3D discrete cracking concrete", Proceedings of the Fifth World Congress on Computational Mechanics WCCM V, July 7-12, Viena Austria Eds: H.A. Mang, F.G. Rammerstorfer, J Eberhardsteiner, J., Publisher: Viena University of tecnologi, Austria, ISBN 3-9501554-0-6, http:wccm.tuwien.ac.at.
  16. Paz, C. N. M., Martha, L. F., Alves, J. L. D., Fairbairn, E. M. R., Ebecken, N. F. F. and Coutinho, A. L. G. A. (2002b), "3D simulation of concrete cracking: probabilistic formulation in parallel environment". The Sixth International Conference on Computational Structures Technology, Prague-Czech Republic: B. H. V. Topping and Bittnar, 1, 1-19.
  17. Paz, C. N. M., Martha, L. F., Alves, J. L. D., Fairbairn, E. M. R., Ebecken, N. F. F. and Coutinho, A. L. G. A. (2003), "Parallel implementation for probabilistic analysis of 3D discrete cracking concrete", Lecture Notes in Computer Science, ISBN 3-5540-00852-7, 2565, 79-93.
  18. Petersson, P. E. (1981), "Crack growth an developedment of fracture zones in plain concrete and similar materials", Report TVBM-1006 Division of Building Materials, Lund Institute of Tecnology, Lund, Sweden.
  19. Planas, J., Elices, M., Mazars, J. and Bazant, Z. P. (1989), Editors Craking and Damage. London: Elsevier, 462-76.
  20. Press, W. H., Teukolski, S., Vetterling, W. T. and Flannery, B. (1992), Numerical Recipes, Cambridge University Press.
  21. Prado, E. P. and Vnd Mier, J. G. M. (2003), "Effect of particle structure on model I fracture process in concrete", Eng. Fracture Mech., 70, 1793-1807. https://doi.org/10.1016/S0013-7944(03)00125-5
  22. Rossi, P. and Richer, S. (1987), "Numerical modeling of concrete cracking based on a stochastic approach", Mater. and Struct., RILEM, 20, 334-337. https://doi.org/10.1007/BF02472579
  23. Rossi, P., Wu, X., Maou, Fle and Belloc, A. S. (1994), "Scale effect on concrete in tension", Mater. Struct., RILEM, 27, 437-444. https://doi.org/10.1007/BF02473447
  24. Rossi, P., Ulm, F.-J. and Hachi, F. (1996), "Compressive behavior of concrete: physical mechanisms and modeling", J. Eng. Mech., ASCE, 122(11), 1038-1043. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:11(1038)
  25. Rossi, P. and Ulm, F.-J. (1997), "Size effects in the biaxial behavior of concrete: physical mechanisms and modeling", Mat. Struct., RILEM, 30, 210-216. https://doi.org/10.1007/BF02486178
  26. Schlangen, E. and Van Mier, J. G. M. (1992), "Micromechanical analysis of fracture of concrete", Int. J. Damage Mech., 1(4), 435-454. https://doi.org/10.1177/105678959200100404
  27. Tschegg, E., Kreuzer, H. and Zelenzny M. "Fracture in concrete under biaxial loadings-numerical evaluation of wedge-splitting results", Fracture of Mechanics of Concrete Structures, Bazant ZP, editors. London: Elsevier 455-60.
  28. Van Mier, J. G. M. and Van Vliet, M. R. A. (2003), "Influence of microstructure of concrete on size/scale efects in tensile fracture", Eng. Fract. Mech., 70, 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
  29. Weibull, W. (1939), "A statical theory of the strength of materials", Proc Royal Swedish Intitute of Engineering Research, 151.

피인용 문헌

  1. Numerical procedures for extreme impulsive loading on high strength concrete structures vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.159