References
- Abrams, M. S. (1971), "Compressive strength of concrete at temperatures to 1600F", ACI SP 25, Temperature and Concrete, American Concrete Institute, Detroit.
- Batdorf, S. B. and Budianski, B. (1949), "A mathematical theory of plasticity based on the concept of slip", Technical Note No. 1871, National Advisory Committee for Aeronautics, Washington D.C.
- Bazant, Z. P. and Chern, J. C. (1987), "Stress-induced thermal and shrinkage strains in concrete", J. Eng. Mech., 113(10), 1493-1511. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1493)
- Bazant, Z. P. and Prat, P. C. (1988), "Microplane model for brittle-plastic material - Parts I and II", J. Eng. Mech., 114(10), 1672-1702. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
- Bazant, Z. P. and Ozbolt, J. (1990), "Nonlocal microplane model for fracture, damage and size effect in structures", J. of Eng. Mech., 116(11), 2485-2504. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2485)
- Bazant, Z. P. and Kaplan, M. F. (1996), Concrete at High Temperatures: Material Properties and Mathematical Models, Harlow, Longman.
- Carol, I., Jirásek, M. and Bazant, Z. P. (2001), "New thermodynamically consistent approach to microplane theory: Part I - Free energy and consistent microplane stress", Int. J. Solid. and Struct., 38(17), 2921-2931. https://doi.org/10.1016/S0020-7683(00)00212-2
- Belytschko, T., Liu, W. K. and Moran, B. (2001), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd.
- Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. (2002), Concepts and Applications of Finite Element Analysis, 4th edition, John Wiley & Sons Inc.
- Ehm, C. (1986), "Versuche zur Festigkeit und Verformung von Beton unter zweiaxialer Beanspruchung und hohen Temperaturen", PhD thesis, Heft 71, TU Braunschweig, Braunschweig.
- Gawin, D., Majorana, C. E. and Schrefler, B. A. (1999), "Numerical analisys of hygro-thermal behaviour and damage of concrete at high temperatures", Mech. Cohes.-Frict. Mater., 4(1), 37-74. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S
- Khoury, G. A.,Grainger, B. N. and Sullivan, P. J. E. (1985a), "Transient thermal strain of concrete: literature review, conditions within specimens and behaviour of individual constituents", Mag. of Conc. Res., 37(132), 131-144. https://doi.org/10.1680/macr.1985.37.132.131
-
Khoury, G. A., Grainger, B. N. and Sullivan, P. J. E. (1985b), "Strain of concrete during first heating to
$600{^{\circ}C}$ under load", Mag. of Conc. Res., 37(133), 195-215. https://doi.org/10.1680/macr.1985.37.133.195 - Nielsen, C. V., Pearce, C. J. and Bi ani , N. (2001), "Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint", Mag. of Conc. Res., 54(4), 239-249
- Nielsen, C. V., Pearce, C. J. and Bi ani , N. (2004), "Improved phenomenological modelling of transient thermal strains for concrete at high temperatures", Comput. and Conc., 1(2), 189-209. https://doi.org/10.12989/cac.2004.1.2.189
- Ozbolt, J., Li, Y.-J. and Kozar, I. (2001), "Microplane model for concrete with relaxed kinematic constraint", Int. J. Solid. and Struct., 38(16), 2683-2711. https://doi.org/10.1016/S0020-7683(00)00177-3
- Pearce, C. J., Bi ani , N. and Nielsen, C. V. (2003), "A transient thermal creep model for concrete", Computational Modeling of Concrete Structures, Sweets & Zeitlinger, Lisse.
- Reick, M. (2001), "Brandverhalten von Befestigungen mit großem Randabstand in Beton bei zentrischer Zugbeanspruchung", Mitteilungen des Institut fur Werkstoffe im Bauwesen, Band 2001/4, IWB, Universitat Stuttgart, Stuttgart.
- Schneider, U. (1986), Properties of Materials at High Temperatures, Concrete, 2nd. Edition, RILEM Technical Comitee 44-PHT, Technical University of Kassel, Kassel.
- Schneider, U. (1988), "Concrete at high temperatures - A general review", Fire Safety J., 13(1), 55-68 https://doi.org/10.1016/0379-7112(88)90033-1
- Stabler, J. (2000), "Computational modelling of thermomechanical damage and plasticity in concrete", PhD thesis, The University of Queensland, Brisbane.
- Taylor, G. I. (1938), "Plastic strain in metals", J. of the Inst. of Metals., 62, 307-324.
- Terro, M. J. (1998), "Numerical modelling of the behaviour of concrete structures in fire", ACI Struct. J., 95(2), 183-193.
- Thelandersson, S. (1983), "On the multiaxial behaviour of concrete exposed to high temperature", Nucl. Eng. and Design, 75(2), 271-282. https://doi.org/10.1016/0029-5493(83)90023-7
- Thelandersson, S. (1987), "Modelling of combined thermal and mechanical action in concrete", J. Eng. Mech., 113(6), 893-906. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:6(893)
- Thienel, K.-C. (1993), "Festigkeit und Verformung von Beton bei hoher Temperatur und biaxialer Beanspruchung - Versuche und Modellbildung", PhD thesis, Heft 10, IBMB, TU Braunschweig, Braunschweig.
- Thienel, K.-C. and Rostassy, F. S. (1996), "Transient creep of concrete under biaxial stress and high temperature", Cem. and Conc. Res., 26(9), 1409-1422. https://doi.org/10.1016/0008-8846(96)00114-7
-
Zhang, B. and Bi ani , N. (2002), "Residual fracture toughness of normal- and high-strength gravel concrete after heating to
$600{^{\circ}C}$ ", ACI Mater. J., 99(3), 217-226.
Cited by
- Experimental study on concrete edge failure of single headed stud anchors after fire exposure vol.96, 2018, https://doi.org/10.1016/j.firesaf.2018.01.005
- Spalling of heated high performance concrete due to thermal and hygric gradients vol.4, pp.1, 2016, https://doi.org/10.12989/acc.2016.4.1.001
- Modelling the effect of damage on transport processes in concrete vol.24, pp.9, 2010, https://doi.org/10.1016/j.conbuildmat.2010.02.028
- Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures vol.46, pp.8, 2011, https://doi.org/10.1016/j.firesaf.2011.07.010
- Ultimate tensile strength of embedded I-sections: a comparison of experimental and numerical results vol.6, pp.4, 2014, https://doi.org/10.1007/s40091-014-0077-y
- Numerical analysis of spalling of concrete cover at high temperature vol.5, pp.4, 2008, https://doi.org/10.12989/cac.2008.5.4.279
- The virtual penetration laboratory: new developments for projectile penetration in concrete vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.087
- Integration of the microplane constitutive model into the EPIC code vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.145
- Numerical procedures for extreme impulsive loading on high strength concrete structures vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.159
- Some aspects of load-rate sensitivity in visco-elastic microplane material model vol.7, pp.4, 2005, https://doi.org/10.12989/cac.2010.7.4.317
- The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data vol.9, pp.4, 2005, https://doi.org/10.12989/cac.2012.9.4.293
- Aggregate effect on concrete cone capacity vol.191, pp.None, 2005, https://doi.org/10.1016/j.engstruct.2019.04.028
- Post-fire concrete edge failure in single and multiple anchors pre-loaded in shear vol.122, pp.None, 2021, https://doi.org/10.1016/j.firesaf.2021.103334
- Analytical model for the Load-Slip behavior of headed stud shear connectors vol.252, pp.None, 2022, https://doi.org/10.1016/j.engstruct.2021.113631