DOI QR코드

DOI QR Code

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko (Institute for Construction Materials Stuttgart, University of Stuttgart) ;
  • Koxar, Ivica (Faculty of Civil Engineering, University of Rijeka) ;
  • Eligehausen, Rolf (Institute for Construction Materials Stuttgart, University of Stuttgart) ;
  • Periskic, Goran (Institute for Construction Materials Stuttgart, University of Stuttgart)
  • Received : 2005.04.12
  • Accepted : 2005.08.10
  • Published : 2005.08.25

Abstract

In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Keywords

References

  1. Abrams, M. S. (1971), "Compressive strength of concrete at temperatures to 1600F", ACI SP 25, Temperature and Concrete, American Concrete Institute, Detroit.
  2. Batdorf, S. B. and Budianski, B. (1949), "A mathematical theory of plasticity based on the concept of slip", Technical Note No. 1871, National Advisory Committee for Aeronautics, Washington D.C.
  3. Bazant, Z. P. and Chern, J. C. (1987), "Stress-induced thermal and shrinkage strains in concrete", J. Eng. Mech., 113(10), 1493-1511. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1493)
  4. Bazant, Z. P. and Prat, P. C. (1988), "Microplane model for brittle-plastic material - Parts I and II", J. Eng. Mech., 114(10), 1672-1702. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
  5. Bazant, Z. P. and Ozbolt, J. (1990), "Nonlocal microplane model for fracture, damage and size effect in structures", J. of Eng. Mech., 116(11), 2485-2504. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2485)
  6. Bazant, Z. P. and Kaplan, M. F. (1996), Concrete at High Temperatures: Material Properties and Mathematical Models, Harlow, Longman.
  7. Carol, I., Jirásek, M. and Bazant, Z. P. (2001), "New thermodynamically consistent approach to microplane theory: Part I - Free energy and consistent microplane stress", Int. J. Solid. and Struct., 38(17), 2921-2931. https://doi.org/10.1016/S0020-7683(00)00212-2
  8. Belytschko, T., Liu, W. K. and Moran, B. (2001), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd.
  9. Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. (2002), Concepts and Applications of Finite Element Analysis, 4th edition, John Wiley & Sons Inc.
  10. Ehm, C. (1986), "Versuche zur Festigkeit und Verformung von Beton unter zweiaxialer Beanspruchung und hohen Temperaturen", PhD thesis, Heft 71, TU Braunschweig, Braunschweig.
  11. Gawin, D., Majorana, C. E. and Schrefler, B. A. (1999), "Numerical analisys of hygro-thermal behaviour and damage of concrete at high temperatures", Mech. Cohes.-Frict. Mater., 4(1), 37-74. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S
  12. Khoury, G. A.,Grainger, B. N. and Sullivan, P. J. E. (1985a), "Transient thermal strain of concrete: literature review, conditions within specimens and behaviour of individual constituents", Mag. of Conc. Res., 37(132), 131-144. https://doi.org/10.1680/macr.1985.37.132.131
  13. Khoury, G. A., Grainger, B. N. and Sullivan, P. J. E. (1985b), "Strain of concrete during first heating to $600{^{\circ}C}$ under load", Mag. of Conc. Res., 37(133), 195-215. https://doi.org/10.1680/macr.1985.37.133.195
  14. Nielsen, C. V., Pearce, C. J. and Bi ani , N. (2001), "Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint", Mag. of Conc. Res., 54(4), 239-249
  15. Nielsen, C. V., Pearce, C. J. and Bi ani , N. (2004), "Improved phenomenological modelling of transient thermal strains for concrete at high temperatures", Comput. and Conc., 1(2), 189-209. https://doi.org/10.12989/cac.2004.1.2.189
  16. Ozbolt, J., Li, Y.-J. and Kozar, I. (2001), "Microplane model for concrete with relaxed kinematic constraint", Int. J. Solid. and Struct., 38(16), 2683-2711. https://doi.org/10.1016/S0020-7683(00)00177-3
  17. Pearce, C. J., Bi ani , N. and Nielsen, C. V. (2003), "A transient thermal creep model for concrete", Computational Modeling of Concrete Structures, Sweets & Zeitlinger, Lisse.
  18. Reick, M. (2001), "Brandverhalten von Befestigungen mit großem Randabstand in Beton bei zentrischer Zugbeanspruchung", Mitteilungen des Institut fur Werkstoffe im Bauwesen, Band 2001/4, IWB, Universitat Stuttgart, Stuttgart.
  19. Schneider, U. (1986), Properties of Materials at High Temperatures, Concrete, 2nd. Edition, RILEM Technical Comitee 44-PHT, Technical University of Kassel, Kassel.
  20. Schneider, U. (1988), "Concrete at high temperatures - A general review", Fire Safety J., 13(1), 55-68 https://doi.org/10.1016/0379-7112(88)90033-1
  21. Stabler, J. (2000), "Computational modelling of thermomechanical damage and plasticity in concrete", PhD thesis, The University of Queensland, Brisbane.
  22. Taylor, G. I. (1938), "Plastic strain in metals", J. of the Inst. of Metals., 62, 307-324.
  23. Terro, M. J. (1998), "Numerical modelling of the behaviour of concrete structures in fire", ACI Struct. J., 95(2), 183-193.
  24. Thelandersson, S. (1983), "On the multiaxial behaviour of concrete exposed to high temperature", Nucl. Eng. and Design, 75(2), 271-282. https://doi.org/10.1016/0029-5493(83)90023-7
  25. Thelandersson, S. (1987), "Modelling of combined thermal and mechanical action in concrete", J. Eng. Mech., 113(6), 893-906. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:6(893)
  26. Thienel, K.-C. (1993), "Festigkeit und Verformung von Beton bei hoher Temperatur und biaxialer Beanspruchung - Versuche und Modellbildung", PhD thesis, Heft 10, IBMB, TU Braunschweig, Braunschweig.
  27. Thienel, K.-C. and Rostassy, F. S. (1996), "Transient creep of concrete under biaxial stress and high temperature", Cem. and Conc. Res., 26(9), 1409-1422. https://doi.org/10.1016/0008-8846(96)00114-7
  28. Zhang, B. and Bi ani , N. (2002), "Residual fracture toughness of normal- and high-strength gravel concrete after heating to $600{^{\circ}C}$", ACI Mater. J., 99(3), 217-226.

Cited by

  1. Experimental study on concrete edge failure of single headed stud anchors after fire exposure vol.96, 2018, https://doi.org/10.1016/j.firesaf.2018.01.005
  2. Spalling of heated high performance concrete due to thermal and hygric gradients vol.4, pp.1, 2016, https://doi.org/10.12989/acc.2016.4.1.001
  3. Modelling the effect of damage on transport processes in concrete vol.24, pp.9, 2010, https://doi.org/10.1016/j.conbuildmat.2010.02.028
  4. Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures vol.46, pp.8, 2011, https://doi.org/10.1016/j.firesaf.2011.07.010
  5. Ultimate tensile strength of embedded I-sections: a comparison of experimental and numerical results vol.6, pp.4, 2014, https://doi.org/10.1007/s40091-014-0077-y
  6. Numerical analysis of spalling of concrete cover at high temperature vol.5, pp.4, 2008, https://doi.org/10.12989/cac.2008.5.4.279
  7. The virtual penetration laboratory: new developments for projectile penetration in concrete vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.087
  8. Integration of the microplane constitutive model into the EPIC code vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.145
  9. Numerical procedures for extreme impulsive loading on high strength concrete structures vol.7, pp.2, 2005, https://doi.org/10.12989/cac.2010.7.2.159
  10. Some aspects of load-rate sensitivity in visco-elastic microplane material model vol.7, pp.4, 2005, https://doi.org/10.12989/cac.2010.7.4.317
  11. The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data vol.9, pp.4, 2005, https://doi.org/10.12989/cac.2012.9.4.293
  12. Aggregate effect on concrete cone capacity vol.191, pp.None, 2005, https://doi.org/10.1016/j.engstruct.2019.04.028
  13. Post-fire concrete edge failure in single and multiple anchors pre-loaded in shear vol.122, pp.None, 2021, https://doi.org/10.1016/j.firesaf.2021.103334
  14. Analytical model for the Load-Slip behavior of headed stud shear connectors vol.252, pp.None, 2022, https://doi.org/10.1016/j.engstruct.2021.113631