DOI QR코드

DOI QR Code

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M. (Concept Engineering Consultants) ;
  • Pavlovic, M.N. (Department of Civil & Environmental Engineering, Imperial College)
  • 투고 : 2004.06.26
  • 심사 : 2005.05.25
  • 발행 : 2005.06.25

초록

This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

키워드

참고문헌

  1. Al-Gadhib, A. H., Asad-ur-Rahman, K. and Baluch, M. H. (1998), "CDM based finite element code for concrete in 3-D", Computers & Struct., 67, 451-462. https://doi.org/10.1016/S0045-7949(98)00044-3
  2. Al-Gadhib, A. H., Baluch, M. H., Shaalan, A., Khan, A. R. (2000), "Damage model for monotonic and fatigue response of high strength concrete", Int. J. Damage Mech., 9, 57-78. https://doi.org/10.1177/105678950000900105
  3. Baluch, M. H., Al-Gadhib, A. H., Khan, A. R. and Shaalan, A. (2003), "CDM model for residual strength of concrete under cyclic compression", Cement & Concrete Composites, 25, 503-512. https://doi.org/10.1016/S0958-9465(02)00090-2
  4. Cela, J. J. L. (1998), "Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drucker-Prager model", Appl. Math. Modelling, 22, 495-515. https://doi.org/10.1016/S0307-904X(98)10050-1
  5. Chen, W.-F. (1988), Plasticity for Structural Engineers, New York, Springer.
  6. Chen, E.-S. and Buyukozturk, O. (1985), "Constitutive model for concrete in cyclic compression". J. Eng. Mech. Div., ASCE, 111, 797-815. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:6(797)
  7. Chen, A. C. T. and Chen, W.-F. (1975), "Constitutive relations for concrete", J. Eng. Mech. Div., ASCE, 101, 465-481.
  8. Cotsovos, D. M. (2004), "Numerical Modelling of Structural Concrete under Dynamic Loading (Earthquake and Impact)", PhD thesis, University of London.
  9. Dube, J.-F., Pijaudier-Cabot, G. and La Borderie, C. (1996), "Rate dependent damage model for concrete in dynamics", J. Eng. Mech. Div., ASCE, 122, 359-380.
  10. Faria, R., Olivera, J. and Cevera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", Int. J. Solids. Struct., 35, 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
  11. Fardis, M. N., Alibe, B. and Tassoulas, J. L. (1983), "Monotonic and cyclic constitutive law for concrete", J. Eng. Mech. Div., ASCE, 109, 516-536. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:2(516)
  12. Grassl, P., Lundgren, K. and Gylltoft, K. (2001), "Concrete in compression: A plasticity theory with a novel hardening law", Int. J. Solids Struct., 39, 5205-5223.
  13. Hatzigeorgiou, G., Beskos, D., Theodorakopoulos, D. and Sfakianakis, M. (2001), "A simple concrete damage model for dynamic FEM applications", Int. J. Computational Eng. Sci., 2, 267-286. https://doi.org/10.1142/S1465876301000325
  14. Kang, H. D., William, K., Shing, B. and Spacone, E. (2000), "Failure analysis of RC columns using a triaxial concrete model", Computers & Struct., 77, 423-440. https://doi.org/10.1016/S0045-7949(00)00006-7
  15. Kotsovos, M. D. (1979), "Effect of stress path on the behaviour of concrete under triaxial stress states", ACI J., 76, 213-223.
  16. Kotsovos, M. D. (1983), "Effect of testing techniques on the post-ultimate behaviour of concrete in compression", Materials & Struct., RILEM, 16, 3-12.
  17. Kotsovos, M. D. and Pavlovi , M. N. (1995), Structural Concrete: Finite-element analysis and design, London, Thomas Telford.
  18. Kotsovos, M. D. and Pavlovi , M. N. (1999), Ultimate limit-state design of concrete structures: a new approach, London, Thomas Telford.
  19. Kotsovos, M. D. and Spiliopoulos, K. V. (1998), "Modelling of crack closure for finite-element analysis of structural concrete", Computers & Struct., 69, 383-398. https://doi.org/10.1016/S0045-7949(98)00107-2
  20. Kwak, H.-G. and Kim, D.-Y. (2004), "Cracking behavior of RC shear panels subjected to cyclic loadings", Computers & Concrete, 1, 77-98. https://doi.org/10.1296/CAC2004.01.01.06
  21. Lefas, I. (1988), "Behaviour of reinforced concrete walls and its implementation for ultimate limit state design", Ph.D. J. Thesis, University of London.
  22. Mazars, J. (1986), "A description of micro and macroscale damage of concrete structures", Eng. Fracture Mech., 25, 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  23. Murray, D. W., Chitnuyanondh, L., Rijub-Agha, K. Y. and Wong, C. (1979), "Concrete plasticity theory for biaxial stress analysis", J. Eng. Mech. Div., ASCE, 105, 989-1005.
  24. Papa, E. and Taliercio, A. (1996), "Anisotropic damage model for the multiaxial static behaviour of plain concrete", Eng. Fracture Mech., 55, 163-179. https://doi.org/10.1016/0013-7944(96)00004-5
  25. Winnicki, A. and Cichon, C. (1998), "Plastic model for concrete in plain stress state. I: Theory", J. Eng. Mech., 124, 591-602. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:6(591)
  26. Winnicki, A. and Cichon, C. (1998), "Plastic model for concrete in plain stress state. II: Numerical validation", J. Eng. Mech., 124, 603-613. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:6(603)
  27. Winnicki, A., Pearce, C. J. and Bicani , N. (2001), "Viscoplasic Hoffman consistency model for concrete", Computers & Struct., 79, 7-19. https://doi.org/10.1016/S0045-7949(00)00110-3
  28. Yang, B.-L., Dafalias, Y. F. and Herrmann, L. R. (1985). "A bounding surface plasticity model for concrete", J. Eng. Mech. Div., ASCE, 111, 359-380. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(359)
  29. Yasuhiro, C. O. and Chen, W.-F. (1987). "Hypoplastic-perfectly plastic model for concrete materials", J. Eng. Mech. Div., ASCE, 113, 1840-1860. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:12(1840)
  30. Van Mier, J. G. M (1984), "Strain-softening of concrete under multiaxial loading conditions", PhD thesis, Eindhoven University of Technology.
  31. Van Mier, J. G. M, Shah, S. P., Armand, M., Balayssac, J. P., Bascoul, A., Choi S., Dasenbrock, D., Ferrara, G., French, C., Gobbi, M. E., Karihaloo, B. L., Konig, G., Kotsovos, M. D., Labuz, J., Lange-Korbar, D., Markeset, G., Pavlovi , M. N., Simsch, G., Thienel, K-C, Turatsinze, A., Ulmer, M., van Geel, H. J. G. M., van Vliet, M. R. A. and Zissopoulos, D. (1997), "Strain softening of concrete in uniaxial compression", Materials and Structures, RILEM, 30, 195-209. https://doi.org/10.1007/BF02486177
  32. Zissopoulos, P. M., Kotsovos, M. D. and Pavlovi , M. N. (2000) "Deformational behaviour of concrete specimens in uniaxial compression under different boundary conditions", Cement and Concrete Res., 30, 153-159. https://doi.org/10.1016/S0008-8846(99)00227-6

피인용 문헌

  1. Mathematical micromodeling of infilled frames: State of the art vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.08.010
  2. Modelling of RC beams under impact loading vol.165, pp.2, 2012, https://doi.org/10.1680/stbu.2012.165.2.77
  3. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading vol.35, pp.5, 2008, https://doi.org/10.1016/j.ijimpeng.2007.03.006
  4. Seismic behaviour of RC walls: an attempt to reduce reinforcement congestion vol.63, pp.4, 2011, https://doi.org/10.1680/macr.10.00001
  5. Seismic design of structural concrete walls: an attempt to reduce reinforcement congestion vol.59, pp.9, 2007, https://doi.org/10.1680/macr.2007.59.9.627
  6. Cracking of RC beam/column joints: Implications for the analysis of frame-type structures vol.52, 2013, https://doi.org/10.1016/j.engstruct.2013.02.018
  7. Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.223
  8. A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications vol.5, pp.3, 2008, https://doi.org/10.12989/cac.2008.5.3.217
  9. Sensitivity and Uncertainty Analysis of SHPB Tests for Concrete Materials vol.08, pp.08, 2016, https://doi.org/10.1142/S1758825116500885
  10. Design for earthquake-resistent reinforced concrete structural walls vol.50, pp.2, 2015, https://doi.org/10.1007/s11012-014-9877-1
  11. Effect of transverse reinforcement on short structural wall behaviour vol.65, pp.17, 2013, https://doi.org/10.1680/macr.13.00018
  12. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression vol.37, pp.2, 2010, https://doi.org/10.1016/j.ijimpeng.2009.06.012
  13. Crack velocity-dependent dynamic tensile behavior of concrete vol.55, 2013, https://doi.org/10.1016/j.ijimpeng.2013.01.003