DOI QR코드

DOI QR Code

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E. (Department of Physics, Central University of Las Villas) ;
  • Valencia-Morales, E. (Department of Physics, Central University of Las Villas) ;
  • Vega-Leyva, J. (Department of Physics, Central University of Las Villas) ;
  • Antiquera Munoz, J. (University of Magallanes)
  • Received : 2004.04.22
  • Accepted : 2005.01.30
  • Published : 2005.02.25

Abstract

We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Keywords

References

  1. Addleson, L. (1972), Materials for Buildings, 2 (London: Iliffe Books) 168.
  2. Carslaw, H. S. and Jaeger, J. C. (1970), Conduction of Heat in Solids, Oxford University Press, Oxford.
  3. Claisse, P., Elsayad, H., Shaaban, I. (1997), "Absorption and sorptivity of cover concrete", J. Mater. in Civ. Eng, August, 105-110.
  4. Crank, J. (1975), The Mathematics of Diffusion, Clarendon Press, Oxford.
  5. Dhir, R. K. and Byars, E. A. (1991), Magazine of Concrete Research, 43, 219-232. https://doi.org/10.1680/macr.1991.43.157.219
  6. Goual, M. S., de Barquin, F., Benmalek, M. L., Bali, A. and Queneudec, M. (2000), "Estimation of the capillary transport coefficient of clayed aerated concrete using a gravimetric technique", Cem. Conc. Res., 30, 1559-1563. https://doi.org/10.1016/S0008-8846(00)00379-3
  7. Hall, C. and Kam Min Tse, T. (1986), "Water movement in porous building materials VII: The sorptivity of mortars", Bldg. Env. , 21, 113-118. https://doi.org/10.1016/0360-1323(86)90017-X
  8. Hall, C. and Yau, M.H. (1987), "Water movement in porous building materials IX: The water absorption and sorptivity of concretes", Ibid, 22, 77-82. https://doi.org/10.1016/0360-1323(87)90044-8
  9. Hall, C. (1989), "Water sorptivity of mortars and concrete: a review", Mag. Concrete.Res., 41, 51-61. https://doi.org/10.1680/macr.1989.41.147.51
  10. Ho, D. W. (1986), "Influence of slag cement on the water sorptivity of concrete, (in Fly ash, silica fume, slag and natural pozzolans in concrete)", Proceedings of International Conference (American Concrete Institute, SP-91, Detroit) 1463-1473.
  11. Ho, D. W. and Lewis, R. K. (1987), "The water sorptivity of concrete: the influence of constituents under conditions curing", Durab. Buildg. Mater., 4, 241-252.
  12. Holm, A. and Kunzel, H. (2000), "Non-isothermal moisture transfer in porous building materials", Materialsweek, Munich, September.
  13. Jost, W. (1960), Diffusion in solids, liquids, and gases, Academic Press, New York.
  14. Kalid, M., Mehrotra S. P, Verma, M., Ahmad, J. and Verma, C. (2002), "Performance of multiblend cement under aggressive environment", The Indian Concr. J., January, 22-26.
  15. Kelham, S. (1988), Mag. of Concr. Res, 40, 106-110. https://doi.org/10.1680/macr.1988.40.143.106
  16. Klieger, P., Joseph F. Lamond (Eds) (1994), Significance of tests and properties of concrete and concrete-making materials, ASTM STP 169C.
  17. Kuntz, M. and Lavalle, P. (2001), "Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials", J. Phys. D: Appl.Phys. , 34, 1-8. https://doi.org/10.1088/0022-3727/34/1/301
  18. Luping, T. (1996), "Chloride transport in concrete measurements and prediction", Diss. Chalmers University of Technology, Department of Building Materials, Publication P-96: 6.
  19. Martys, N and Ferraris, C. (1997), "Capillary transport in mortars and concretes", Cem. Concr. Res., 27, 747-760. https://doi.org/10.1016/S0008-8846(97)00052-5
  20. Martys, N. (1999), "Diffusion in partially-saturated porous materials", Materials and Structures, 32, 555-562. https://doi.org/10.1007/BF02480489
  21. McCarter, W. J., Watson, D. W. and Chrisp, T. M. (2001a), "Surface zone concrete: Drying, absorption and moisture distribution", J. Mater. Civ. Eng., January, 49-57.
  22. McCarter, W. J., Chrisp, T. M., Butler, A. and Basheer, P. A. M. (2001b), "Near-surface sensors for condition monitoring of cover-zone concrete", Const. Bldg. Mater. , 15, 115-124. https://doi.org/10.1016/S0950-0618(00)00060-X
  23. Metha, P. K. (1983), "Pozzolanic and cementitious byproducts as mineral admixtures for concretes-A critical rewiev", ACI Publ. SP-79, ed. V.M. Malhortra vol. 1, 1-46.
  24. Metha, P. K. (1993), Concrete Structure, Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632.
  25. Mejia, R. and Talero, R. (1996), "Effect of the curing and preconditioning regime on the absorptivity of added mortars", Proceedings of 2nd NACE Latin American Corrosion Congress, September.
  26. Mejia, R., Delvasto, S. and Talero, R. (1997), "Performance of GGBS cements", Proceedings of the 13th International Conference on Solid Waste Technology and Management, Philadelphia, USA 7D.
  27. Mejlhede Jensen, O., Freiesleben Hansen, P., Coats, M. and Glasser, F. P. (1999), "chloride ingress in cement paste and mortar", Cem. Concr. Res, 29, 1497-1504. https://doi.org/10.1016/S0008-8846(99)00131-3
  28. Mironova, M., Gospodinov, P. and Kazandjiev, R. (2002), "The effect of liquid push out of the materials capillaries under sulfate ion diffusion in cement composite", Cem. Concr. Res., 32, 9-15. https://doi.org/10.1016/S0008-8846(01)00621-4
  29. Ohdaira, E. and Mazuzawa, N. (2000), "Water content and its effect on ultrasound propagation in concrete the possibility of NDE", Ultrasonics, 38, 546-552. https://doi.org/10.1016/S0041-624X(99)00158-4
  30. Sabir, B., Wild, S. and O'Farrell, M. (1998), "A water sorptivity for mortar and concrete", Materials and Structures, 31, 568-574. https://doi.org/10.1007/BF02481540
  31. Swamy, R. N. (1997), "Design for durability and strength through the use of fly ash and slag in concrete", Mario Collepardi Symposium on Advances in Concrete Science and Technology, P. K. Meta Ed., Rome 8 October, 127-194.
  32. Thoft-Christensen, P. (2001), "What happens with reinforced concrete structures when the reinforcement corrodes", Proceedings. I. Workshop on "Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems, Ube, Yamaguchi, Japan, September.
  33. Thoft-Christensen, P. (2002), "Deterioration of concrete structures", First International Conference on Bridge Maintenance, Safety and Management, LABMAS.
  34. Thomas, M. D. A. and Bamforth, P. B. (1999), "Modelling chloride diffusion in concrete. Effect of fly ash and slag", Cem. Concr. Res., 29, 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  35. Wirquin, E., Hadjeva-Zaharieva, R., Buyle-Bodin, F. (2000), "Use of water absorption by concrete as criterion of the durability of concrete-Application to recycled aggregate concrete", Materials and Structures, 33, 403-408. https://doi.org/10.1007/BF02479650
  36. Xi, Y., Bazant, Z. P., Molina, L. and Jennings, H. M. (1994), Advn. Cem. Bas. Mat., 1, 258-264. https://doi.org/10.1016/1065-7355(94)90034-5

Cited by

  1. Evaluating the short- and long-term moisture transport phenomena in lightweight aggregate concretes vol.59, pp.6, 2007, https://doi.org/10.1680/macr.2007.59.6.435