DOI QR코드

DOI QR Code

Hybrid RANS/LES simulations of a bluff-body flow

  • Camarri, S. (Dipartimento di Ingegneria Aerospaziale, Universita di Pisa) ;
  • Salvetti, M.V. (Dipartimento di Ingegneria Aerospaziale, Universita di Pisa) ;
  • Koobus, B. (Department de mathematiques, Universite de Montpellier II) ;
  • Dervieux, A. (INRIA Sophia-Antipolis)
  • 투고 : 2005.02.07
  • 심사 : 2005.10.10
  • 발행 : 2005.12.25

초록

A hybrid RANS/LES approach, based on the Limited Numerical Scales concept, is applied to the numerical simulation of the flow around a square cylinder. The key feature of this approach is a blending between two eddy-viscosities, one given by the $k-{\varepsilon}$ RANS model and the other by the Smagorinsky LES closure. A mixed finite-element/finite-volume formulation is used for the numerical discretization on unstructured grids. The results obtained with the hybrid approach are compared with those given by RANS and LES simulations for three different grid resolutions; comparisons with experimental data and numerical results in the literature are also provided. It is shown that, if the grid resolution is adequate for LES, the hybrid model recovers the LES accuracy. For coarser grid resolutions, the blending criterion appears to be effective to improve the accuracy of the results with respect to both LES and RANS simulations.

키워드

참고문헌

  1. Alabakin, I., Braza, M., Camarri, S., Dervieux, A., Koobus, B., Kozubskaya, T., Rodes, P. and Salvetti, M.V. (2003), "Unstable and unsteady aerodynamics: compared information from different numerical models", In Periaux, J., Champion, M., Gagnepain, J.-J., Pironeeau, O., Stoufflet, B. and Thomas, P., Fluid Dynamics and Aeroacoustics: new challenges, pp. 253-277, CIMNE, Barcelona.
  2. Bagget, J.S., Jiménez, J. and Kravchenko, A.G. (1997), "Resolution requirements in large-eddy simulations of shear flows", Annual Research Briefs, Center for Turbulence Research, Stanford (CA), 51-66.
  3. Batten, P. (2002), "LNS-An approach towards embedded LES", AIAA Paper 2002-0427. American Institute of Aeronautics and Astronautics.
  4. Batten, P., Goldberg, U. and Chakravarthy, S. (2004), "Interfacing statistical turbulence closures with large-eddy simulation", AIAA J., 42(3), 485-492. https://doi.org/10.2514/1.3496
  5. Batten, P., Goldberg, U.C., Palaniswamy, S. and Chakravarthy, S.R. (2001), "Hybrid LES-RANS: spatialresolution and energy-transfer issues", In Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N. Leschziner, M. and Sommerfeld, M. Eds., Turbulence and shear flow phenomena, vol. 2, 159-164. KTH, Universitetsservice US AB.
  6. Bearman, P.W. and Obasaju, E.D. (1982), "An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders", J. Fluid Mech., 119, 297-321. https://doi.org/10.1017/S0022112082001360
  7. Bosh, G. and Rodi, W. (1998), "Simulation of vortex shedding past a square cylinder with different turbulence models", Int. J. Num. Meth. Fluids, 28, 601-616. https://doi.org/10.1002/(SICI)1097-0363(19980930)28:4<601::AID-FLD732>3.0.CO;2-F
  8. Breuer, M., Jovicic, N. and Mazaev, K. (2003), "Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence", Int. J. Num. Meth. Fluids, 41, 357-388. https://doi.org/10.1002/fld.445
  9. Camarri, S., Koobus, B., Salvetti, M.V. and Dervieux, A. (2002a), "A low diffusion MUSCL scheme for LES on unstructured grids", Technical Report RR-4512, INRIA.
  10. Camarri, S., Salvetti, M.V., Koobus, B. and Dervieux, A. (2002b), "Large-eddy simulation of a bluff-body flow on unstructured grids", Int. J. Num. Meth. Fluids, 40, 1431-1460. https://doi.org/10.1002/fld.425
  11. Camarri, S., Salvetti, M.V., Koobus, B. and Dervieux, A. (2004), "A low diffusion MUSCL scheme for LES on unstructured grids", Computers & Fluids, 33, 1101-1129. https://doi.org/10.1016/j.compfluid.2003.10.002
  12. Constantinescu, G.S., Pasinato, H., Wang, Y.Q., Forsythe, J.R. and Squires, K.D. (2002), "Numerical investigation of flow past a prolate spheroid", ASME J. Fluids Eng., 124, 904-910. https://doi.org/10.1115/1.1517571
  13. Constantinescu, G.S. and Squires, K.D. (2003), "LES and DES investigations of turbulent flow over a sphere at Re=10000", Flow, Turbulence and Combustion, 70, 267-298. https://doi.org/10.1023/B:APPL.0000004937.34078.71
  14. Durbin, P.A. (1995), "Separated flow computations with the $k-{\varepsilon}-v^2$ model", AIAA J., 33(4), 659-664. https://doi.org/10.2514/3.12628
  15. Farhat, C., Koobus, B. and Tran, H. (1999), "Simulation of vortex shedding dominated flows past rigid and flexible structures", In Computational Methods for Fluid-Structure Interaction, pp. 1-30, Tapir.
  16. Fureby, C., Tabor, G., Weller, H.G. and Gosman, A.D. (2000), "Large eddy simulation of the flow around a square prism", AIAA J., 38(3), 442-452. https://doi.org/10.2514/2.1003
  17. Guillard, H. and Viozat, C. (1999), "On the behaviour of upwind schemes in the low Mach number limit", Computers & Fluids, 28, 63-86. https://doi.org/10.1016/S0045-7930(98)00017-6
  18. Hedges, L.S., Travin, A.K. and Spalart, P.R. (2002), "Detached-eddy simulation of a simplified landing gear", ASME J. Fluids Eng., 124, 413-423. https://doi.org/10.1115/1.1471532
  19. Hinze, J. (1959), Turbulence. MacGraw-Hill, New York.
  20. Kato, M. and Launder, B.E. (1993), "The modelling of turbulent flow around stationary and vibrating square cylinders", In Proc. 9th Symp. Turbulent Shear Flows.
  21. Koobus, B. and Farhat, C. (2004), "A variational multiscale method for the large eddy simulation of compressible trurbulent flows on unstructured meshes-application to vortex shedding", Comput. Methods Appl. Mech. Eng., 193, 1367-1383. https://doi.org/10.1016/j.cma.2003.12.028
  22. Koobus, B., Fahrat, C. and Tran, H. (2000), "Computation of unsteady viscous flows around moving bodies using the $k-{\epsilon}$ turbulence model on unstructured dynamic grids", Comput. Methods Appl. Mech. Eng., 190(11-12), 1441-1466. https://doi.org/10.1016/S0045-7825(00)00172-9
  23. Kotapati-Apparao, R.B and Squires, K.D. (2003), "Prediction of a prolate spheroid undergoing a pitchup maneuver", AIAA Paper 2002-0269, Reno, NV. American Institute of Aeronautics and Astronautics.
  24. Lakehal, D. and Thiele, F. (2001), "Sensitivity of turbulent shedding flows to non-linear stress-strain relations and Reynolds stress models", Comput. Fluids, 30, 1-35.
  25. Launder, B. and Spalding, D. (1979), "The numerical computation of turbulent flows", Comp. Meth. Appl. Mech. and Eng., 3, 269-289.
  26. Lenormand, E., Sagaut, P. and Phuoc, L.T. (2000), "Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number", Int. J. Num. Meth. Fluids, 32, 369-406. https://doi.org/10.1002/(SICI)1097-0363(20000229)32:4<369::AID-FLD943>3.0.CO;2-6
  27. Lubke, H., Schmidt, S., Rung, T. and Thiele, F. (2001), "Comparison of LES and RANS in bluff-body flows", J. Wind Eng. Ind. Aerodyn., 89, 1471-1485. https://doi.org/10.1016/S0167-6105(01)00134-9
  28. Lyn, D.A., Einav, S., Rodi, W. and Park, J.H. (1995), "A laser-doppler velocimeter study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder", J. Fluid Mech., 304, 285-319. https://doi.org/10.1017/S0022112095004435
  29. Lyn, D.A. and Rodi, W. (1994), "The flapping shear layer formed by flow separation from the forward corner of a square cylinder", J. Fluid Mech., 267, 353-376. https://doi.org/10.1017/S0022112094001217
  30. Martin, R. and Guillard, H. (1996), "A second order defect correction scheme for unsteady problems", Computers & Fluids, 25(1), 9-27. https://doi.org/10.1016/0045-7930(95)00027-5
  31. Menter, F.R. (1993), "Zonal two-equation $k-{\omega}$ turbulence models for aerodynamic flows", Technical Report 93-2906, American Institute of Aeronautics and Astronautics.
  32. Mohammadi, B. and Medic, G. (1998), "A critical evaluation of the classical k-epsilon model and wall-laws for unsteady flows over bluff bodies", Int. J. Comp. Fluid Dyn., 10(1), 1-11. https://doi.org/10.1080/10618569808961669
  33. Mohammadi, B. and Pironneau, O. (1997), "Unsteady separated turbulent flows computation with wall-laws and $k-{\epsilon}$ model", Comput. Method Appl. M., 148(3-4), 393-405. https://doi.org/10.1016/S0045-7825(97)00060-1
  34. Omari, K.E., Schall, E., Koobus, B. and Dervieux, A. (2003), "Turbulence modeling challenges in airship studies", In del Galdeano, G., de Silanes, L. and et al., editors, Monografias del Seminario Matematico, pp. 545-554.
  35. Rodi, W. (2002), "Large eddy simulations of the flow past bluff bodies", In Launder, B. and Sandham, N., editors, Closure Strategies for Turbulent and Transitional Flows, pp. 361-391. Cambridge University Press.
  36. Rodi, W., Ferziger, J.H., Breuer, M. and Pourquié, M. (1997), "Status of large eddy simulation: results of a workshop", ASME J. Fluids Eng., 119, 248-262. https://doi.org/10.1115/1.2819128
  37. Roe, P.L. (1981), "Approximate Riemann solvers, parameters, vectors and difference schemes", J. Comp. Phys., 43, 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  38. Schmidt, S. and Thiele, F. (2002), "Comparison of numerical methods applied to the flow over wall-mounted cubes", Int. J. of Heat and Fluid Flow, 23, 330-339. https://doi.org/10.1016/S0142-727X(02)00180-7
  39. Shur, M., Spalart, P.R., Strelets, M. and Travin, A. (1999), "Detached-eddy simulation of an airfoil at high angle of attack", In Rodi, W. and Laurence, D., editors, Engineering Turbulence Modelling and Experiments-4. Elsevier Science.
  40. Smagorinsky, J. (1963), "General circulation experiments with the primitive equations", Monthly Weather Review, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  41. Sohankar, A., Davidson, L. and Norberg, C. (2000), "Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models", ASME J. Fluids Eng., 122, 39-47. https://doi.org/10.1115/1.483224
  42. Spalart, P.R. and Allmaras, S.R. (1994), "A one-equation turbulence model for aerodynamic flows", La Recherche Aérospatiale, 1, 5-21.
  43. Spalart, P.R., Jou, W.H., Strelets, M. and Allmaras, S. (1997), "Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach", In Liu, C. and Liu, Z., editors, Advances in DNS/LES, Columbus, OH. Greyden Press.
  44. Speziale, C.G. (1998), "A combined large-eddy simulation and time-dependent RANS capability for high-speed compressible flows", J. Sci. Comput., 13(3), 253-274. https://doi.org/10.1023/A:1023266932231
  45. Steger, J.L. and Warming, R.F. (1981), "Flux vector splitting for the inviscid gas dynamic equations with applications to finite difference methods", J. Comp. Phys., 40(2), 263-293. https://doi.org/10.1016/0021-9991(81)90210-2
  46. Travin, A., Shur, M., Strelets, M. and Spalart, P. (2000), "Detached-eddy simulation past a circular cylinder", Flow Turbulence and Combustion, 63(1-4), 293-313. https://doi.org/10.1023/A:1009901401183
  47. van Leer, B. (1977), "Towards the ultimate conservative scheme. IV: A new approach to numerical convection", J. Comp. Phys., 23, 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
  48. Voke, P. (1997), "Flow past a square cylinder: test case LES 2", In Chollet J. et al. editors, Direct and Large Eddy Simulation II, vol. 5 of ERCOFTAC Series, pp. 355-373. Kluwer.

피인용 문헌

  1. Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids vol.39, pp.7, 2010, https://doi.org/10.1016/j.compfluid.2010.01.017
  2. Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility vol.13, pp.1, 2005, https://doi.org/10.12989/was.2010.13.1.021