References
- Avalos, D.R., Larrondo, H.A. and Laura, P.A.A. (1993), 'Vibrations of a simply supported plate carrying an elastically mounted concentrated mass', Ocean Engineering, 20, 195-205 https://doi.org/10.1016/0029-8018(93)90035-G
- Avalos, D.R., Larrondo, H.A. and Laura, P.A.A. (1994), 'Transverse vibrations of a circular plate carrying an elastically mounted concentrated mass', J. Sound Vib., 177, 251-258 https://doi.org/10.1006/jsvi.1994.1431
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc.
- Chang, T.P. and Chang, C.Y. (1998), 'Vibration analysis of beams with a two degree-of-freedom spring-mass system', J. Solids Struct., 35(5-6), 383-401 https://doi.org/10.1016/S0020-7683(97)00037-1
- Clough, R.W. (1993), Dynamics of Structures, McGraw-Hill, Inc.
- Cullum, J.K. and Willoughby, R.A. (2002), 'Lanczos algorithms for large symmetric eigenvalue computations', Society for Industrial & Applied Mathematics
- Gerald, C.F. and Wheatley, P.O. (1998), Applied Numerical Analysis, Addison Wesley Publishing Company
- Gurgoze, M. (1996), 'On the eigen-frequencies of a cantilever beam with attached tip mass and a spring-mass system', J. Sound Vib., 190, 149-162 https://doi.org/10.1006/jsvi.1996.0053
- Ingber, M.S., Pate, A.L. and Salazar, J.M. (1992), 'Vibration of a clamped plate with concentrated mass and spring attachments', J. Sound Vib., 153, 143-166 https://doi.org/10.1016/0022-460X(92)90633-9
- Jen, M.U. and Magrab, E.B. (1993), 'Natural frequencies and mode shapes of beams carrying a two-degree-of- freedom spring-mass system', J. Vibration and Acoustics, 115, 202-209 https://doi.org/10.1115/1.2930331
- Kopmaz, O. and Telli, S. (2002), 'Free vibrations of a rectangular plate carrying a distributed mass', J. Sound Vib., 251, 39-57 https://doi.org/10.1006/jsvi.2001.3977
- Larrondo, H.L., Avalos, D.R. and Laura, P.A.A. (1992), 'Natural frequencies of Bernoulli beam carrying an elastically mounted concentrated mass', Ocean Engineering, 19, 461-468 https://doi.org/10.1016/0029-8018(92)90004-N
- Rossi, R.E. and Laura, RA.A. (1996), 'Symmetric and antisymmetric normal modes of a cantilever rectangular plate: Effect of Poisson's ratio and a concentrated mass', J. Sound Vib., 195, 142-148 https://doi.org/10.1006/jsvi.1996.0410
- Rossit, C.A. and Laura, P.A.A. (2001), 'Free vibrations of a cantilever beam with a spring-mass system attached to the free end', Ocean Engineering, 28, 933-939 https://doi.org/10.1016/S0029-8018(00)00055-X
- Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H.O. (1993), 'Free vibrations of Timoshenko beams carrying elastically mounted, concentrated mass', J. Sound Vib., 165, 209-223 https://doi.org/10.1006/jsvi.1993.1254
- Wu, JJ. (2002), 'Alternative approach for the free vibration of beams carrying a number of two-degree of freedom spring-mass systems', J. Struct. Eng., 128(12), 1604-1616 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1604)
- Wu, J.J. (2005), 'Free vibration characteristics of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems using equivalent mass method', Int. J. Solids Stnct. (In Press)
- Wu, J.J. and Whittaker, A.R. (1999), 'The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-dof spring-mass systems', J. Sound Vib., 227(2), 361-381 https://doi.org/10.1006/jsvi.1999.2324
- Wu, J.S. and Chen, D.W (2001), 'Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique', J. Numer. Meth. Eng., 50, 1039-1058 https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Wu, J.S. and Chou, H.M. (1998), 'Free vibration analysis of a cantilever beam carrying any number of elastically mounted pointed masses with the analytical-and-numerical-combined method', J. Sound Vib., 213, 317-332 https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Luo, S.S. (1997a), 'Free vibration analysis of a rectangular plate carrying any number of point masses and translational springs by using the modified and quasi-analytical and numerical combined methods', Int. J. Numer. Meth. Eng., 40, 2171-2193 https://doi.org/10.1002/(SICI)1097-0207(19970630)40:12<2171::AID-NME124>3.0.CO;2-H
- Wu, J.S. and Luo, S.S. (1997b), 'Use of the analytical-and-numerical-combined method in the free vibration analysis of a rectangular plate with any number of point masses and translational springs', J. Sound Vib., 200, 179-194 https://doi.org/10.1006/jsvi.1996.0697
Cited by
- Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered vol.28, pp.6, 2008, https://doi.org/10.12989/sem.2008.28.6.659
- Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system vol.40, pp.5, 2011, https://doi.org/10.12989/sem.2011.40.5.637