References
- ANSYS, Swanson Analysis Systems, Swanson J., ANSYS 5.4. USA
- Cao, Y.P., Hu, N., Lu, J., Fukunaga, H. and Yao, Z.H. (2002), 'A 3D brick element based on Hu-Washizu variational principle for mesh distortion', Int. J. Num. Meth. Eng., 53, 2529-2548 https://doi.org/10.1002/nme.409
- Chandra, S. and Prathap, G (1989), 'A field-consistent formulation for the 8-noded solid finite element', Comp. Struct., 33, 345-355 https://doi.org/10.1016/0045-7949(89)90005-9
- Chen, Y.I. and Wu, GY. (2004), 'A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique', Struct. Eng. Mech., 17(1), 113-140 https://doi.org/10.12989/sem.2004.17.1.113
- Chen, W.J. and Cheung, Y.K. (1992), 'Three-dimensional 8-node and 20-node refined hybrid isoparametric elements', Int. J. Num. Meth. Eng., 35, 1871-1889 https://doi.org/10.1002/nme.1620350909
- Choi, C.K. and Chung, K.Y. (1996), 'Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom', Struct. Eng. Meek, 4(5), 569-586 https://doi.org/10.12989/sem.1996.4.5.569
- Choi, C.K., Chung, K.Y. and Lee, E.J. (2001), 'Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements', Struct. Eng. Mech., 11(1), 105-122 https://doi.org/10.12989/sem.2001.11.1.105
- Choi, C.K. and Lee, N.H. (1993), 'Three dimensional transition solid elements for adaptive mesh gradation', Struct. Eng. Mech., 1(1), 61-74 https://doi.org/10.12989/sem.1993.1.1.061
- Darilmaz, K. (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng. Meek, 19(2), 199-215
- Feng, W., Hoa, S.V. and Huang, Q. (1997), 'Classification of stress modes in assumed stress fields of hybrid finite elements', Int. J. Num. Meth. Eng., 40, 4313-4339 https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
- Ibrahimbegovic, A. and Wilson, E.L. (1991), 'Thick shell and solid finite elements with independent rotation fields', Int. J. Num. Meth. Eng, 31, 1393-1414 https://doi.org/10.1002/nme.1620310711
- MacNeal, R.H. and Harder, R.L. (1985), 'A proposed standard set of problems to test finite element accuracy', Finite Elem. Anal. Des., 1, 3-20 https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. and Harder, R.L. (1988), 'A refined four-noded membrane element with rotational degrees of freedom', Comp. Struct., 28, 75-84 https://doi.org/10.1016/0045-7949(88)90094-6
- Leissa, A.W. (1969), Vibration of Plates, Scientific and Technical Information Division, NASA, Washington, DC
- Leissa, A.W. and Narita, Y (1980), 'Natural frequencies of simply supported circular plates', J. Sound Vib., 70(2), 221-229 https://doi.org/10.1016/0022-460X(80)90598-2
- Ooi, E.T., Rajendran, S. and Yeo, J.H. (2004), 'A 20-node hexahedron element with enhanced distortion tolerance', Int. J. Numer. Meth. Engng, 60(15), 2501-2530 https://doi.org/10.1002/nme.1056
- Pian, T.H.H. (1964), 'Derivation of element stiffness matrices by assumed stress distributions', AIAA J., 2, 1333- 1336 https://doi.org/10.2514/3.2546
- Pian, T.H.H. and Chen, D.P. (1983), 'On the suppression of zero energy deformation modes', Int. J. Num. Meth. Eng., 19, 1741-1752 https://doi.org/10.1002/nme.1620191202
- Pian, T.H.H. and Sumihara, K. (1984), 'Rational approach for assumed stress finite elements', Int. J. Numer. Meth. Engng., 20, 1685-1695 https://doi.org/10.1002/nme.1620200911
- Pian, T.H.H. and Tong, P. (1986), 'Relations between incompatible model and hybrid stress model', Int. J. Num. Meth. Eng., 22, 173-181 https://doi.org/10.1002/nme.1620220112
- Punch, E.F. and Atluri, S.N. (1984), 'Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements', Comput. Meth. Appl. Mech. Eng., 47, 331-356 https://doi.org/10.1016/0045-7825(84)90083-5
- Rajendran, S. and Prathap, G (1999), 'Eight-node field-consistent hexahedron element in dynamic problems', Struct. Eng. Meek, 8(1), 19-26 https://doi.org/10.12989/sem.1999.8.1.019
- Sze, K.Y. and Ghali, A. (1993), 'Hybrid hexahedral element for solids, plates, shells and beams by selective scaling', Int. J. Num. Meth. Eng., 36, 1519-1540 https://doi.org/10.1002/nme.1620360907
- Sze, K.Y. and Lo, S.H. (1999), 'A 12-node hybrid stress brick element for beam/column analysis', Eng. Comp., 16(6-7), 752-766 https://doi.org/10.1108/02644409910298101
- Sze, K.Y. and Pan, Y.S. (2000), 'Hybrid stress tetrahedral elements with Allman's rotational D.O.F.s', Int. J. Num. Meth. Eng, 48, 1055-1070 https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7<1055::AID-NME916>3.0.CO;2-P
- Sze, K.Y, Soh, A.K. and Sim, YS. (1996), 'Solid elements with rotational DOFs by explicit hybrid stabilization', Int. J. Num. Meth. Eng, 39, 2987-3005 https://doi.org/10.1002/(SICI)1097-0207(19960915)39:17<2987::AID-NME986>3.0.CO;2-H
- Sze, K.Y. and Yao, L.Q. (2000), 'A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I-solid-shell element formulation', Int. J. Numer. Meth. Engng., 48, 545-564 https://doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6
- Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, Mc-Graw Hill, New York
- Timoshenko, S., Young, D.H. and Weaver Jr. W (1974), Vibration Problems in Engineering, 4th. ed., John Wiley & Sons, New York
- Yeo, S.T. and Lee, B.C. (1997), 'New stress assumption for hybrid stress elements and refined four-node plane and eight-node brick elements', Int. J. Num. Meth. Eng., 40, 2933-2952 https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16<2933::AID-NME198>3.0.CO;2-3
- Yunus, S.M., Saigal, S. and Cook, R.D. (1989), 'On improved hybrid finite elements with rotational degrees of freedom', Int. J. Num. Meth. Eng., 28, 785-800 https://doi.org/10.1002/nme.1620280405
- Yunus, S.M., Pawlak, T.P. and Cook, R.D. (1991), 'Solid elements with rotational degrees of freedom: Part 1- hexahedral elements', Int. J. Num. Meth. Eng, 31, 573-592 https://doi.org/10.1002/nme.1620310310
Cited by
- Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior vol.12, pp.4, 2012, https://doi.org/10.12989/scs.2012.12.4.275
- An assumed-stress hybrid element for static and free vibration analysis of folded plates vol.25, pp.4, 2007, https://doi.org/10.12989/sem.2007.25.4.405
- Analysis of sandwich plates: A three-dimensional assumed stress hybrid finite element vol.14, pp.4, 2012, https://doi.org/10.1177/1099636212443916
- Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach vol.7, pp.3, 2005, https://doi.org/10.12989/scs.2007.7.3.241
- Free Vibration Analysis of Moderately Thick Coupled Plates with Elastic Boundary Conditions and Point Supports vol.19, pp.12, 2019, https://doi.org/10.1142/s0219455419501505