DOI QR코드

DOI QR Code

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K. (Department of Civil Engineering, Division of Structural Engineering, Aristotle University of Thessaloniki) ;
  • Avramidis, I.E. (Department of Civil Engineering, Division of Structural Engineering, Aristotle University of Thessaloniki)
  • Received : 2005.02.03
  • Accepted : 2005.09.07
  • Published : 2005.11.30

Abstract

A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Keywords

References

  1. Aristizabal J.D - Ochoa (1997), 'First and second order stiffness matrices and load vector of beam - Columns with semi - rigid connections', J. Struct. Eng., 123(5), 669-677 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(669)
  2. Avramidis, E.I. and Morfidis, K. (2004), 'Axially loaded generalized beam element on a two-parameter elastic foundation with semi-rigid connections and rigid offsets', Proc. of WCCM VI in Conjunction with APCOM'04, Beijing, China, Sept
  3. Bowles, J.E. (1988), Foundation Analysis and Design, McGraw - Hill Book Co., New York
  4. Cheng, F.Y. and Pantelides, C.P. (1988), 'Static Timoshenko beam-column on elastic media', J. Struct. Eng., 114(5), 1152-1172 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1152)
  5. Council on Tall Buildings and Urban Habitat, Committee 43 (1993), Semi-Rigid Connections in Steel Frames, Mc Graw-Hill, New York
  6. Filonenko-Borodich, M.M. (1940), 'Some approximate theories of elastic foundation', Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta Mekhanica, No.46, 3-18
  7. Ghali, A. and Neville, A.M. (1989), Structural Analysis - A Unified Classical and Matrix Approach, Chapman and Hall, London - New York, 3rd edition
  8. Karamanlidis, D. and Prakash, V. (1989), 'Exact transfer and stiffness matrices for a beam/column resting on a two-parameter foundation', Comp. Meth. Appl. Mech. Eng., 72, 77-89 https://doi.org/10.1016/0045-7825(89)90122-9
  9. Matheu, E.E. and Suarez, L.E. (1996), 'Eigenvalue analysis of structures with flexible random connections', Struct. Eng. Mech., 4(3), 277-301 https://doi.org/10.12989/sem.1996.4.3.277
  10. Miyahara, F. and Ergatoudis, J.G (1976), 'Matrix analysis of structure foundation interaction', J. Struct. Div. ASCE, 102,251-265
  11. Morfidis, K. and Avramidis, I.E. (2002), 'Formulation of a generalized beam element on a two-parameter elastic foundation with semi-rigid connections and rigid offsets', Comput. Struct., 80, 1919-1934 https://doi.org/10.1016/S0045-7949(02)00226-2
  12. Morfidis, K. (2003), 'Research and development of methods for the modeling of foundation structural elements and soil', PhD Dissertation, Department of Civil Engineering, Aristotle University of Thessaloniki
  13. Onu, G (2000), 'Shear effect in beam finite element on two - parameter elastic foundation', J. Struct. Eng., 126(9), 1104-1107 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1104)
  14. Pasternak, PL. (1954), 'On a new method of analysis of an elastic foundation by means of two constants', Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, USSR (in Russian)
  15. SAP Nonlinear Version 7.42 (2000), Integrated Finite Element Analysis and Design of Structures. Berkeley, California, USA: Computers and Structures, Inc.
  16. Shirima, L.M. and Giger, M.W. (1992), 'Timoshenko beam element resting on two-parameter elastic foundation', J. Eng. Mech., 118(2), 280-295 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(280)
  17. Terzaghi, K. (1955), 'Evaluation of coefficient of subgrade reaction', Geotechnique, 5, 297-326 https://doi.org/10.1680/geot.1955.5.4.297
  18. Ting, B.Y. and Mockry, E.F. (1984), 'Beam on elastic foundation finite element', J. Struct. Eng., 110(10), 2324- 2339 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2324)
  19. Vallabhan, C.V.G and Das, Y.C. (1991), 'Modified Vlasov model for beams on elastic foundations', J. Geotechnical Engineering, 117(6), 956-966 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
  20. Vesic, A.B. (1961), 'Bending of beams on isotropic elastic solid', J. Eng. Mech. Div., ASCE, 87(EM 2), 35-53
  21. Vlasov, V.Z. and Leont'ev, U.N. (1960), Beams, Plates and Shells on Elastic Foundations, Gosudarstvennoe Izdatel'stvo, Fiziko-Matematicheskoi Literatury, Moskva. [(Translated from Russian), Israel Program for Scientific Translations 1966, Jerusalem]
  22. Wang, T.M. and Gagnon, L.W. (1978), 'Vibrations of continuous Timoshenko Beams on Winkler-Pasternak Foundations', J. Sound Vib., 59(2), 211-220 https://doi.org/10.1016/0022-460X(78)90501-1
  23. Winkler, E. (1867), Die Lehre von der Elastizitat und Festigkeit, Dominicus, Prague
  24. Zhaohua, F. and Cook, R.D. (1983), 'Beam elements on two-parameter elastic foundations', J. Eng. Mech., 109(6) 1390-1402 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)

Cited by

  1. Free vibrations of Timoshenko beam-columns on Pasternak foundations vol.19, pp.5, 2013, https://doi.org/10.1177/1077546311433609
  2. Force-based derivation of exact stiffness matrix for beams onWinkler-Pasternak foundation vol.95, pp.2, 2015, https://doi.org/10.1002/zamm.201300030
  3. Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector vol.310, pp.4-5, 2008, https://doi.org/10.1016/j.jsv.2007.08.014
  4. Improved nonlinear displacement-based beam element on a two-parameter foundation vol.19, pp.6, 2015, https://doi.org/10.1080/19648189.2014.965847
  5. In-plane stability of uniform steel beam-columns on a Pasternak foundation with zero end-shortening vol.82, pp.10-11, 2012, https://doi.org/10.1007/s00419-012-0664-y
  6. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements vol.36, pp.5, 2009, https://doi.org/10.1016/j.compgeo.2008.12.006