DOI QR코드

DOI QR Code

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas (Institute of Structural Mechanics, Bauhaus-University) ;
  • Bucher, Christian (Institute of Structural Mechanics, Bauhaus-University)
  • 투고 : 2004.11.02
  • 심사 : 2005.07.26
  • 발행 : 2005.10.20

초록

The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

키워드

참고문헌

  1. Barsoum, R. (1974), 'Application of quadratic isoparametric finite elements in linear elastic fracture mechanics', Int. J. Fracture, 10, 603-605 https://doi.org/10.1007/BF00155266
  2. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), 'Meshless methods: An overview and recent developments', Comput. Meth. Appl. Mech. Eng., 139, 3-48 https://doi.org/10.1016/S0045-7825(96)01078-X
  3. Belytschko, T., Lu, Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Meth. Eng., 37, 229-256 https://doi.org/10.1002/nme.1620370205
  4. Belytschko, T., Organ, D. and Krongauz, Y. (1995), 'A coupled fmite element-element-free Galerkin method', Int. J. Comput. Mech., 17,3057-3080
  5. Chen, J.-S., Wu, C.-T., Yoon, S. and You, Y. (2001), 'A stabilized conforming nodal integration for Galerkin mesh-free methods', Int. J. Numer. Meth. Eng., 50, 435-466 https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
  6. Fleming, M. (1997), 'The Element-free Galerkin method for fatique and quasi-static fracture', Ph.D. Thesis, Northwestern University, Evanston, Illinois
  7. Fortune, S. (1995), Computing in Euclidean Geometry, Vol. 1 of Lecture Notes Series on Computing, 193-233, Du, D.-Z. and Hwang, F.K
  8. Haussler-Combe, U. (2001), 'Elementfreie Galerkin-Verfahren: Grundlagen und Einsatzmoglichkeiten zur Berechnung von Stahlbetontragwerken', Habilitation-Thesis, University of Karlsruhe, Germany
  9. Karutz, H. (2000), 'Adaptive Kopplung der Elementfreien Galerkin-Methode mit der Methode der Finiten Elemente bei Rissfortschrittsproblemen', Ph.D. Thesis, Ruhr-Universitat Bochum, Germany
  10. Lancaster, P. and Salkauskas, K (1981), 'Surfaces generated by moving least squares methods', Mathematics of Computation., 37, 141-158 https://doi.org/10.2307/2007507
  11. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2003a), 'Moving least squares differential quadrature method and its application to the analysis of shear deformable plates', Int. J. Numer. Meth. Eng., 56, 2331-2351 https://doi.org/10.1002/nme.646
  12. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2003b), 'Vibration analysis of symmetrically laminated plates based on FSDT using moving least squares differential quadrature method', Comput. Meth. Appl. Mech. Eng., 192, 2203-2222 https://doi.org/10.1016/S0045-7825(03)00238-X
  13. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2004), 'Analysis of general shaped thin plates by the moving leastsquares differential quadrature method', Finite Elements in Analysis and Design, 40, 1453-1474 https://doi.org/10.1016/j.finel.2003.10.002
  14. Most, T. and Bucher, C. (2003), 'Moving Least Squares'-elements for stochastic crack propagation simulations coupled with stochastic finite elements. In A. Der Kiureghian, S. Madanat, and J. Pestana (Eds.), Proc. 9th Int. Conf. Appl. of Stat. and Prob. Civil Eng., San Francisco, California, July 6-9. Rotterdam: Balkema
  15. Most, T., Unger, J. and Bucher, C. (2004a), 'Stochastic crack growth simulation in RIC structures by means of meshless methods', In C. Bucher and T. Takada (Eds.), Proc. of the 1st Workshop on Performance Evaluation of Existing Structures, Weimar, December 9-10, 2004
  16. Most, T., Unger, J.F. and Bucher, C. (2004b), 'Cohesive discrete crack modeling using Virtual Crack Extension technique within the Natural Neighbor Galerkin Method', Comput. Struct., Submitted for publication
  17. Shewchuk, J. (1996), 'Triangle: A two-dimensional quality mesh generator and Delaunay triangulator', Technical Report, School of Computer Science, Carnegie Mellon University. download: http://www.cs.cmu.edu/quake/triangle.html
  18. Sukumar, N., Moran, B. and Belytschko, T. (1998), 'The Natural Element Method in solid mechanics', Int. J. Numer. Meth. Eng., 43, 839-887 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
  19. Tada, H., Paris, P. and Irwin, G. (1993), The Stress Analysis of Cracks Handbook. Hellertown, Pennsylvania: Del Research Corporation
  20. Unger, J.F., Most, T., Bucher, C. and Konke, C. (2004), 'Adaptation of the natural element method for crack growth simulations', In P. Neittaanmaki, T. Rossi, K. Majava, and O. Pironneau (Eds.), Proc. 4th European Congress on Compo Mechanics in Appl. Sciences and Eng., Jyvaskyla, Finland, July 24-28
  21. Yang, Z., Chen, J. and Holt, G. (2001), 'Efficient calculation of stress intensity factors using virtual crack extension technique', Comput. Struct., 79, 2705-2715 https://doi.org/10.1016/S0045-7949(01)00146-8

피인용 문헌

  1. Mixed meshless formulation for analysis of shell-like structures vol.199, pp.17-20, 2010, https://doi.org/10.1016/j.cma.2009.12.007
  2. THE BOUNDARY ELEMENT METHOD vol.10, pp.06, 2013, https://doi.org/10.1142/S0219876213500370
  3. A comparison of approximate response functions in structural reliability analysis vol.23, pp.2-3, 2008, https://doi.org/10.1016/j.probengmech.2007.12.022
  4. An Element Free Galerkin Method Based on the Modified Moving Least Squares Approximation vol.71, pp.3, 2017, https://doi.org/10.1007/s10915-016-0337-z
  5. The elastoplastic formulation of polygonal element method based on triangular finite meshes vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.119
  6. The Error Estimates of the Interpolating Element-Free Galerkin Method for Two-Point Boundary Value Problems vol.2014, 2014, https://doi.org/10.1155/2014/641592
  7. A new method for essential boundary conditions imposition in explicit meshless methods vol.80, 2017, https://doi.org/10.1016/j.enganabound.2017.03.011
  8. Reliability-based performance optimization of TMD for vibration control of structures with uncertainty in parameters and excitation vol.24, pp.1, 2017, https://doi.org/10.1002/stc.1857
  9. Element-free Galerkin modeling of neutron diffusion equation in X–Y geometry vol.43, 2012, https://doi.org/10.1016/j.anucene.2011.12.032
  10. An improved hybrid boundary node method for solving steady fluid flow problems vol.35, pp.1, 2011, https://doi.org/10.1016/j.enganabound.2010.07.005
  11. Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM vol.69, pp.12, 2007, https://doi.org/10.1002/nme.1866
  12. Modified Response-Surface Method: New Approach for Modeling Pan Evaporation vol.22, pp.10, 2017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001541
  13. Moving Kriging reconstruction for high-order finite volume computation of compressible flows vol.253, 2013, https://doi.org/10.1016/j.cma.2012.08.016
  14. New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares vol.32, pp.6, 2008, https://doi.org/10.1016/j.enganabound.2007.10.013
  15. Adaptive finite elements using hierarchical mesh and its application to crack propagation analysis vol.253, 2013, https://doi.org/10.1016/j.cma.2012.07.024
  16. Mixed meshless local Petrov–Galerkin collocation method for modeling of material discontinuity vol.59, pp.1, 2017, https://doi.org/10.1007/s00466-016-1327-6
  17. An Improved Interpolating Element-Free Galerkin Method Based on Nonsingular Weight Functions vol.2014, 2014, https://doi.org/10.1155/2014/323945
  18. Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization vol.31, pp.2, 2007, https://doi.org/10.1002/nag.536
  19. A natural neighbour-based moving least-squares approach for the element-free Galerkin method vol.71, pp.2, 2007, https://doi.org/10.1002/nme.1956
  20. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs) vol.59, 2014, https://doi.org/10.1016/j.compositesb.2013.11.014
  21. Monte Carlo simulation of radiative transfer in a medium with varying refractive index specified at discrete points vol.48, 2017, https://doi.org/10.1016/j.apm.2017.02.049
  22. The MLPG with improved weight function for two-dimensional heat equation with non-local boundary condition vol.25, pp.4, 2013, https://doi.org/10.1016/j.jksus.2013.02.007
  23. Sequential Stochastic Response Surface Method Using Moving Least Squares-Based Sparse Grid Scheme for Efficient Reliability Analysis 2019, https://doi.org/10.1142/S0219876218400170
  24. Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM vol.285, 2015, https://doi.org/10.1016/j.cma.2014.11.026
  25. Numerical investigation of high-peclet-number mixing in periodically curved microchannel with strong curvature pp.1521-0537, 2018, https://doi.org/10.1080/01457632.2018.1497120
  26. Blast Demolition Study of Guyed Masts vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/3819183
  27. Seismic reliability analysis of reinforced concrete bridge pier using efficient response surface method–based simulation pp.2048-4011, 2018, https://doi.org/10.1177/1369433218773422
  28. Quadratic penalty method for intensity‐based deformable image registration and 4DCT lung motion recovery vol.46, pp.5, 2005, https://doi.org/10.1002/mp.13457
  29. Regression with individual weigths to prevent overfitting : Methodical application to an overload clutch vol.83, pp.2, 2005, https://doi.org/10.1007/s10010-019-00301-4
  30. Reliability-based design optimization of time-dependent systems with stochastic degradation vol.33, pp.12, 2019, https://doi.org/10.1007/s12206-019-1141-0
  31. Mixed meshless local Petrov-Galerkin (MLPG) collocation methods for gradient elasticity theories of Helmholtz type vol.66, pp.3, 2020, https://doi.org/10.1007/s00466-020-01866-6
  32. A review on development and applications of element-free galerkin methods in computational fluid dynamics vol.21, pp.5, 2005, https://doi.org/10.1080/15502287.2020.1821126
  33. Thermal emission of a two-dimensional semitransparent medium with discrete distributions of graded index vol.117, pp.None, 2005, https://doi.org/10.1016/j.icheatmasstransfer.2020.104726
  34. Efficient Reliability-Based Design Optimization of Degrading Systems Using a Meta-Model of the System Reliability vol.27, pp.6, 2020, https://doi.org/10.1142/s0218539320500199
  35. Improved Moving Least Square-Based Multiple Dimension Decomposition (MDD) Technique for Structural Reliability Analysis vol.18, pp.1, 2021, https://doi.org/10.1142/s0219876220500243
  36. Slip behavior of high-density polyethylene at small shear stresses in the presence of esterified polyethylene glycol vol.33, pp.6, 2005, https://doi.org/10.1063/5.0053461
  37. Simple and robust element-free Galerkin method with almost interpolating shape functions for finite deformation elasticity vol.96, pp.None, 2005, https://doi.org/10.1016/j.apm.2021.03.007
  38. Towards a general interpolation scheme vol.381, pp.None, 2021, https://doi.org/10.1016/j.cma.2021.113830
  39. Analysis of the MLS variants in the meshless local Petrov-Galerkin method for a solution to the 2D Laplace equation vol.135, pp.None, 2005, https://doi.org/10.1016/j.enganabound.2021.11.019