DOI QR코드

DOI QR Code

Robustness analysis of vibration control in structures with uncertain parameters using interval method

  • Chen, Su Huan (Department of Mechanics, Nanling Campus, Jilin University) ;
  • Song, Min (Department of Mechanics, Nanling Campus, Jilin University) ;
  • Chen, Yu Dong (Department of Mechanics, Nanling Campus, Jilin University)
  • Received : 2004.10.13
  • Accepted : 2005.07.04
  • Published : 2005.09.30

Abstract

Variations in system parameters due to uncertainties may result in system performance deterioration. Uncertainties in modeling of structures are often considered to ensure that control system is robust with respect to response errors. Hence, the uncertain concept plays an important role in vibration control of the engineering structures. The paper discusses the robustness of the stability of vibration control systems with uncertain parameters. The vibration control problem of an uncertain system is approximated by a deterministic one. The uncertain parameters are described by interval variables. The uncertain state matrix is constructed directly using system physical parameters and avoided to use bounds in Euclidean norm. The feedback gain matrix is determined based on the deterministic systems, and then it is applied to the actual uncertain systems. A method to calculate the upper and lower bounds of eigenvalues of the close-loop system with uncertain parameters is presented. The lower bounds of eigenvalues can be used to estimate the robustness of the stability the controlled system with uncertain parameters. Two numerical examples are given to illustrate the applications of the present approach.

Keywords

References

  1. Alefeld, G. and Herzberber, J. (1983), Introductions to Interval Computations, Academic Press, New York
  2. Ben-Haim, Y. and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied Mechanics, Elsevier, New York
  3. Chen, S.H. (1992), Vibration Theory of Structural Systems with Random Parameters, Jilin Science and Technology Publishing House. (in Chinese)
  4. Chen, S.H. (1999), Matrix Perturbation Theory in Structural Dynamic Designs, Science Press, Beijing. (in Chinese)
  5. Chen, S.H. and Qiu, Z.P. (1994), 'A new method for computing the upper and lower bounds on frequencies of structures with interval parameters', Mech. Res. Commun., 2583-2592
  6. Chen, S.H. and Qiu, Z.P. (1994), 'Perturbation method for computing eigenvalue bounds in vibration system with interval parameters', Commun. Numer. Meth. Eng., 10, 121-134 https://doi.org/10.1002/cnm.1640100204
  7. Chen, S.H. and Yang, X.W. (2000), 'Interval finite element method of the beam structures', Finite Elements in Analysis and Design, 34, 75-88 https://doi.org/10.1016/S0168-874X(99)00029-3
  8. Chen, S.H., Lian, H.D. and Yang, X.W. (2002), 'Dynamic response analysis for structures with interval parameters', Struct. Eng. Mech., 13(3), 299-312 https://doi.org/10.12989/sem.2002.13.3.299
  9. Chen, S.H., Lian, H.D. and Yang, X.W. (2003), 'Interval eigenvalue analysis for structures with interval parameters', Finite Anal. Des., 39(5-6), 419-431 https://doi.org/10.1016/S0168-874X(02)00082-3
  10. Chen, S.H., Liu, Z.S. and Zhang, Z.F. (1992), 'Random vibration analysis for large-scale structures with random parameters', Comput. Struct., 43, 681-685 https://doi.org/10.1016/0045-7949(92)90509-X
  11. Chen, Y.D., Chen, S.H. and Liu, Z.S. (2001), 'Modal optimal control procedure for near defective systems', J. Sound Vib., 245, 113-132 https://doi.org/10.1006/jsvi.2000.3481
  12. Chen, Y.D., Chen, S.H. and Liu, Z.S. (2001), 'Quantitative measures of modal controllability and observability for the defective and near defective systems', J. Sound Vib., 248, 413-426 https://doi.org/10.1006/jsvi.2000.3826
  13. Contracts, H. (1980), 'The stochastical finite element method', Comput. Struct., 12, 341-348 https://doi.org/10.1016/0045-7949(80)90031-0
  14. Dief, A.S. (1986), Sensitivity Analysis in Linear Systems, Springer, Berlin
  15. Ferrara, A. and Giacomini, L. (2000), 'Control of a class of mechanical systems with uncertainties Via a constructive adaptive/Second order VSC approach', J. Dynamic Systems Measurement and Control. 122(1), 33-39 https://doi.org/10.1115/1.482426
  16. Ganzerli, S. and Pantelides, C.P. (2000), 'Optimum structural design via convex model superposition', Comput. Struct., 74(6), 639-647 https://doi.org/10.1016/S0045-7949(99)00077-2
  17. Ganzerli, S. and Pantelides, C.P. (1999), 'Load and resistance convex models for optimum design', Struct. Optimization, 17(4), 259-268 https://doi.org/10.1007/BF01207002
  18. Juang, Y.T., Kuo, T.S. and Hsu, C.F. (1987), 'Root-locus approach to the stability analysis of interval matrices', Int. J. Control, 46, 817-822 https://doi.org/10.1080/00207178708547394
  19. Krodkiewski, J.M. and Faragher, J.S. (2000), 'Stabilization of motion of helicopter rotor blades using delayed feedback-modeling, computer simulation and experimental verification', J. Sound Vib., 234, 591-610 https://doi.org/10.1006/jsvi.1999.2878
  20. Larson, H.J. (1979), Probabilistic Models in Engineering Dcience, Vols. 1&2, John Wiley, New York
  21. Li, Y.Y. and Yarn, L.H. (2001), 'Robust vibration control of uncertain systems using variable parameter feedback and model-based fuzzy strategies', Comput. Struct., 79(1), 109-119 https://doi.org/10.1016/S0045-7949(00)00134-6
  22. Lin, YK. (1967), Probabilistic Theory of Structural Dynamic, McGraw-Hill, New York
  23. Lindberg, H.E. (1991), 'Dynamic response and buckling failure measures for structures with bounded and random imperfections', Trans. ASME, J. Appl. Mech., 58, 1092-1094 https://doi.org/10.1115/1.2897690
  24. Liu, Z.S., Chen, S.H. and Han, W.Z. (1994), 'Solving the extremum of static response for structural systems with uncertain unknown-but-bound parameters', Comput. Struct., 50(4), 557-561 https://doi.org/10.1016/0045-7949(94)90026-4
  25. Meirovitch, L. (1990), Dynamics and Control, New York: Wiley
  26. Moore, R.E. (1979), Methods and Applications of Interval Analysis, in: SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA
  27. Mori, T. and Kokame, H. (1987), 'Convergence property of interval matrices and interval polynomials', Int. J. Control, 45, 481-484 https://doi.org/10.1080/00207178708933746
  28. Pantelides, C.P. and Booth, B.C. (2000), 'Computer-aided design of optimal structures with uncertainty', Comput. Struct., 74(3), 293-307 https://doi.org/10.1016/S0045-7949(99)00047-4
  29. Pantelides, C.P. and Ganzerli, S. (1998), 'Design of trusses under uncertain loads using convex models', J. Struct. Eng., ASCE, 124(3), 318-329 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(318)
  30. Porter, Rand Crossley, R. (1972), Modal Cntrol Theory and Applications, Taylor & Francis. London
  31. Rachid, A. (1989), 'Robustness of discrete systems under structural uncertainties', Int. J. Control, 50, 1563-1566 https://doi.org/10.1080/00207178908953449
  32. Spencer, B.F. and Sain, M.K. Jr. (1992), 'Probabilistic stability measures for controlled structures subject to real parameter uncertainties', Smart Master. Struct., 1, 294-305 https://doi.org/10.1088/0964-1726/1/4/004
  33. Vanmareke, E. (1983), Random Fields, Analysis and Synthesis, MIT Press, Cambridge, MA