DOI QR코드

DOI QR Code

A general convergence condition of the Newton-Raphson algorithm applied to compressible hyperelasticity

  • Peyraut, Francois (Laboratoire Mecatronique3M, Universite de Technologie de Belfort-Montbeliard) ;
  • Feng, Zhi-Qiang (Laboratoire de Mecanique d'Evry, Universite d'Evry-Val d'Essonne) ;
  • Labed, Nadia (Laboratoire Mecatronique3M, Universite de Technologie de Belfort-Montbeliard)
  • Received : 2004.12.08
  • Accepted : 2005.06.21
  • Published : 2005.09.30

Abstract

This paper presents the implementation of the Blatz-Ko hyperelastic compressible model in a finite element program to deal with large deformation problems. We show analytically and numerically that the minimum number of increment steps in the Newton-Raphson algorithm depends on material properties and applied loads. We also show that this dependence is related to the orientation preservation principle. So we propose a convergence criteria based on the sign of eigenvalues of the deformation gradient matrix.

Keywords

References

  1. Bathe, K.J. and Bolourchi, S. (1979), 'Large displacement analysis of three-dimensional beam structures', Int. J. Num. Meth. Engng., 14, 961-986 https://doi.org/10.1002/nme.1620140703
  2. Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, Chichester (UK), Wiley
  3. Blatz, P.J. and Ko, W.L. (1962), 'Application of finite elastic theory to the deformation of rubbery materials', Transactions of the Society of Rheology, 6, 223-251 https://doi.org/10.1122/1.548937
  4. Ciarlet, P.G (1988), Mathematical Elasticity, Vol. 1 : Three-dimensional Elasticity, North-Holland
  5. Horgan, C.O. (1996), 'Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid', Journal of Elasticity, 42, 165-176 https://doi.org/10.1007/BF00040959
  6. Peyraut, F. (2003), 'Orientation preservation and Newton-Raphson convergence in the case of an hyperelastic sphere subjected to an hydrostatic pressure', Comput. Methods Appl. Mech. Engrg., 192, 1107-1117 https://doi.org/10.1016/S0045-7825(02)00560-1
  7. Peyraut, F. and Labed, N. (2001), 'Preservation de I'orientation et convergence de Newton-Raphson avec le modele hyperelastique compressible de Blatz-Ko', Revue Europeenne des Elements Finis, 10, 595-605 https://doi.org/10.1080/12506559.2001.9737561
  8. Peyraut, F. and Labed, N. (2003), 'Condition de preservation de I'orientation - Application en hyperelasticite compressible', Revue Europeenne des Elements Finis, 12, 99-116 https://doi.org/10.3166/reef.12.99-106
  9. Wineman, A.S. and Waldron, W.K. (1995), 'Normal stress effects induced during circular shear of a compressible non-linear elastic cylinder', Int. J Non-Linear Mechanics, 30, 323-339 https://doi.org/10.1016/0020-7462(94)00043-A
  10. Wood, R.D. and Zienkiewicz, O.C. (1977), 'Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells', Comput. Struct., 7, 725-735 https://doi.org/10.1016/0045-7949(77)90027-X

Cited by

  1. A material-independent algorithm for preserving of the orientation of the spatial basis attached to deforming medium vol.40, pp.6, 2007, https://doi.org/10.1007/s00466-007-0163-0
  2. A Study on Aeroengine Conceptual Design Considering Multi-Mission Performance Reliability vol.10, pp.13, 2020, https://doi.org/10.3390/app10134668