References
- Alefeld, G and Herzberger, J. (1983), Introductions to Interval Computations, Academic Press, New York
- Ben-Haim, Y. and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied Mechanics, Elsevier Science Publishers, Amsterdam
- Chen, S.H., Lian H.D. and Yang, X.W. (2002), 'Interval displacement analysis for structures with interval parameters', Int. J. Numer. Meth. Eng., 53(2), 393-407 https://doi.org/10.1002/nme.281
- Chen, S.H. and Yang, X.W. (2000), 'Interval finite element method for beam structures', Finite Element in Analysis and Design, 34(1), 75-88 https://doi.org/10.1016/S0168-874X(99)00029-3
- Chen, S.H. and Lian H.D. (2002), 'Dynamic response analysis for structures with interval parameters', Struct. Eng. Mech., 13(3), 299-312 https://doi.org/10.12989/sem.2002.13.3.299
- Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York
- Moore, R.E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia
- Qiu, Z.P. and Wang, X.J. (2003), 'Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach', Int. J. Solids Struct., 40, 5423-5439 https://doi.org/10.1016/S0020-7683(03)00282-8
- Qiu, Z.P. (2003), 'Comparison of static response of structures using convex models and interval analysis method', Int. J. Numer. Meth. Eng, 56(12), 1735-1753 https://doi.org/10.1002/nme.636
Cited by
- Optimization method for powertrain mounting systems with uncertain parameters vol.226, pp.2, 2012, https://doi.org/10.1177/0954407011416308
- Interval dynamic response analysis of vehicle-bridge interaction system with uncertainty vol.332, pp.13, 2013, https://doi.org/10.1016/j.jsv.2013.01.025
- Hybrid surrogate model for the prediction of uncertain friction-induced instabilities vol.396, 2017, https://doi.org/10.1016/j.jsv.2017.01.040
- Non-probabilistic defect assessment for structures with cracks based on interval model vol.262, 2013, https://doi.org/10.1016/j.nucengdes.2013.05.013
- Multidimensional parallelepiped model-a new type of non-probabilistic convex model for structural uncertainty analysis vol.103, pp.1, 2015, https://doi.org/10.1002/nme.4877
- An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method vol.29, pp.11, 2007, https://doi.org/10.1016/j.engstruct.2007.01.020
- Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty vol.319, pp.1-2, 2009, https://doi.org/10.1016/j.jsv.2008.06.006
- Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters vol.84, pp.2, 2016, https://doi.org/10.1007/s11071-015-2504-4
- Free vibration analysis of electric-magneto-elastic functionally graded plate with uncertainty vol.2, pp.2, 2016, https://doi.org/10.21595/mme.2016.17891
- A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model vol.225, pp.2, 2014, https://doi.org/10.1007/s00707-013-0975-2
- Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information vol.32, pp.1, 2016, https://doi.org/10.1007/s10409-015-0500-z
- Transient waves in composite‐laminated plates with uncertain load and material property vol.75, pp.3, 2008, https://doi.org/10.1002/nme.2248
- A robust optimization for the frequency and decoupling ratio of a powertrain mounting system based on interval analysis vol.13, pp.3, 2012, https://doi.org/10.1007/s12239-012-0038-z
- Dynamics of flexible multibody systems with hybrid uncertain parameters vol.121, 2018, https://doi.org/10.1016/j.mechmachtheory.2017.09.024
- A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems vol.58, pp.4, 2015, https://doi.org/10.1007/s11433-014-5641-8
- An enhanced subinterval analysis method for uncertain structural problems vol.54, 2018, https://doi.org/10.1016/j.apm.2017.10.017
- A response-surface-based structural reliability analysis method by using non-probability convex model vol.38, pp.15-16, 2014, https://doi.org/10.1016/j.apm.2013.11.053
- Reliability sensitivities with fuzzy random uncertainties using genetic algorithm vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.413
- A new uncertain analysis method and its application in vehicle dynamics vol.50-51, 2015, https://doi.org/10.1016/j.ymssp.2014.05.036
- An efficient Kriging method for global sensitivity of structural reliability analysis with non-probabilistic convex model vol.229, pp.5, 2015, https://doi.org/10.1177/1748006X15580631
- A Monte Carlo simulation method for non-random vibration analysis vol.228, pp.7, 2017, https://doi.org/10.1007/s00707-017-1842-3
- A Chebyshev interval method for nonlinear dynamic systems under uncertainty vol.37, pp.6, 2013, https://doi.org/10.1016/j.apm.2012.09.073
- Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique vol.200, pp.33-36, 2011, https://doi.org/10.1016/j.cma.2011.04.007
- Structural reliability analysis using non-probabilistic convex model vol.254, 2013, https://doi.org/10.1016/j.cma.2012.10.020
- Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance vol.86, pp.3, 2016, https://doi.org/10.1007/s11071-016-2978-8
- Kinematic response of industrial robot with uncertain-but-bounded parameters using interval analysis method vol.33, pp.1, 2019, https://doi.org/10.1007/s12206-018-1235-0
- Static Response Analysis of Uncertain Structures With Large-Scale Unknown-But-Bounded Parameters vol.13, pp.1, 2021, https://doi.org/10.1142/s1758825121500046
- A feasible identification method of uncertainty responses for vehicle structures vol.64, pp.6, 2005, https://doi.org/10.1007/s00158-021-03065-0