Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bahar, L.Y. (1975), 'A state space approach to elasticity', J. of the Franklin Institute, 299, 33-41 https://doi.org/10.1016/0016-0032(75)90082-4
- Bert, C.W. and Malik, M. (1996), 'Differential quadrature method in computational mechanics: A review', Appl. Mech. Rev., 49(1), 1-28 https://doi.org/10.1115/1.3101882
- Chakraborty, A and Gopalakrishnan, S. (2003), 'A spectrally formulated finite element for wave propagation analysis in functionally graded beams', Int. J. Solids Struct., 40(10), 2421-2448 https://doi.org/10.1016/S0020-7683(03)00029-5
- Chakraborty, A, Gopalakrishnan, S. and Reddy, J.N. (2003), 'A new beam finite element for the analysis of functionally graded materials', Int. J. Mech. Sci., 45(3),519-539 https://doi.org/10.1016/S0020-7403(03)00058-4
- Chen, W.Q., Bian, Z.G and Ding, H.J. (2003a), 'Three-dimensional analysis of a thick FGM rectangular plate in thermal environment', J. of Zhejiang University (SCIENCE), 4(1), 1-7 https://doi.org/10.1631/jzus.2003.0001
- Chen, W.Q. and Lti, C.F.. (2005), '3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported', Compos. Struct., 69(1), 77-87 https://doi.org/10.1016/j.compstruct.2004.05.015
- Chen, W.Q., Lv, C.F, and Bian, Z.G (2003b), 'Elasticity solution for free vibration of laminated beams', Compos. Struct., 62(1), 75-82 https://doi.org/10.1016/S0263-8223(03)00086-2
- Chen, W.Q., Lv, C.F. and Bian, Z.G (2004), 'Free vibration analysis of generally laminated beams via statespace- based differential quadrature', Compos. Struct., 63(3-4), 417-425 https://doi.org/10.1016/S0263-8223(03)00190-9
- Civalek, O. and Olker, M. (2004), 'Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates', Struct. Eng. Mech., 17(1), 1-14 https://doi.org/10.12989/sem.2004.17.1.001
- Das, Y.C. and Setlur, A.V. (1970), 'Method of initial functions in two-dimensional elastodynamic problems', J. Appl. Mech., 37, 137-140 https://doi.org/10.1115/1.3408422
- Jiang, W. and Redekop, D. (2002), 'Analysis of transversely isotropic hollow toroids using the semi-analytical DQM', Struct. Eng. Mech., 13(1), 103-116 https://doi.org/10.12989/sem.2002.13.1.103
- Ootao, Y. and Tanigawa, Y. (2000), 'Three-dimensional transient piezothermo-elasticity in functionally graded rectangular plate bonded to a piezoelectric plate', Int. J. Solids Struct., 37(32), 4377-4401 https://doi.org/10.1016/S0020-7683(99)00257-7
- Reddy, J.N., Wang, C.M. and Kitipomchai, S. (1999), 'Axisymmetric bending of functionally graded circular and annular plates', European J. of Mechanics A/Solids, 18(2), 185-199 https://doi.org/10.1016/S0997-7538(99)80011-4
- Redekop, D. and Makhoul, E. (2000), 'Use of the differential quadrature method for the buckling analysis of cylindrical shell panels', Struct. Eng. Mech., 10(5), 451-462 https://doi.org/10.12989/sem.2000.10.5.451
- Sankar, B.V. (2001), 'An elasticity solution for functionally graded beams', Composites Science and Technology, 61(5), 689-696 https://doi.org/10.1016/S0266-3538(01)00007-0
- Sherbourne, A.N. and Pandey, M.D. (1991), 'Differential quadrature method in the buckling analysis of beams and composite plates', Comput. Struct., 40, 903-913 https://doi.org/10.1016/0045-7949(91)90320-L
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, London, Springer-Verlag
- Shu, C. and Richards, B.E. (1992), 'Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations', Int. J. Numer. Meth. Fluids, 15, 791-798 https://doi.org/10.1002/fld.1650150704
- Suresh, S. and Mortensen, A (1998), Fundamentals of Functionally Graded Materials, London, IOM Communications Limited
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity 3, New York, McGraw-Hill
- Wang, B.L., Han, J.C. and Du, S.Y. (1999), 'Functionally graded penny-shaped cracks under dynamic loading', Theoretical and Applied Fracture Mechanics, 32(3),165-175 https://doi.org/10.1016/S0167-8442(99)00037-3
- Wetherhold, R.C., Seelman, S. and Wang, J.Z. (1996), 'The use of functionally graded materials to eliminate or control thermal deformation', Composite Science and Technology, 56(9), 1099-1104 https://doi.org/10.1016/0266-3538(96)00075-9
- Zhong, Z. and Shang, E.T. (2003), 'Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate', Int. J. Solid Struct., 40(20), 5335-5352 https://doi.org/10.1016/S0020-7683(03)00288-9
Cited by
- Two-dimensional solutions for orthotropic materials by the state space method vol.78, pp.3, 2007, https://doi.org/10.1016/j.compstruct.2005.10.006
- Experimental study on variation of mechanical properties of a cantilever beam of bamboo vol.101, 2015, https://doi.org/10.1016/j.conbuildmat.2015.10.078
- Semi-analytical elasticity solutions for bi-directional functionally graded beams vol.45, pp.1, 2008, https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Nonlinear frequency response of parametrically excited functionally graded Timoshenko beams with a crack vol.10, 2010, https://doi.org/10.1088/1757-899X/10/1/012061
- Three-dimensional elasticity solution of simply supported functionally graded rectangular plates with internal elastic line supports vol.44, pp.4, 2009, https://doi.org/10.1243/03093247JSA504
- 3D thermoelasticity solutions for functionally graded thick plates vol.10, pp.3, 2009, https://doi.org/10.1631/jzus.A0820406
- Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators vol.16, pp.3, 2007, https://doi.org/10.1088/0964-1726/16/3/028
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions vol.79, pp.1, 2009, https://doi.org/10.1002/nme.2555
- Two-dimensional thermoelasticity solution for functionally graded thick beams vol.49, pp.4, 2006, https://doi.org/10.1007/s11433-006-0451-2
- Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations vol.84, pp.3, 2008, https://doi.org/10.1016/j.compstruct.2007.07.004
- Dynamic stiffness formulation and free vibration analysis of functionally graded beams vol.106, 2013, https://doi.org/10.1016/j.compstruct.2013.06.029
- Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams vol.147, 2015, https://doi.org/10.1016/j.compstruc.2014.10.001
- Forced vibration analysis of functionally graded porous deep beams vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.013
- Geometrically non-linear transient thermo-elastic response of FG beams integrated with a pair of FG piezoelectric sensors vol.107, 2014, https://doi.org/10.1016/j.compstruct.2013.07.045
- Two-dimensional elasticity solutions for temperature-dependent in-plane vibration of FGM circular arches vol.90, pp.3, 2009, https://doi.org/10.1016/j.compstruct.2009.03.014
- Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation vol.67, pp.1, 2012, https://doi.org/10.1007/s11071-011-0003-9
- An analytical study on the nonlinear vibration of functionally graded beams vol.45, pp.6, 2010, https://doi.org/10.1007/s11012-009-9276-1
- Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk vol.45, pp.1, 2008, https://doi.org/10.1016/j.ijsolstr.2007.07.023
- Geometrically nonlinear free vibration analysis of axially functionally graded taper beams vol.18, pp.4, 2015, https://doi.org/10.1016/j.jestch.2015.04.003
- Stress analysis of aluminium plates one-sided adhesively bonded reinforced with square composite patches using state space method vol.30, pp.22, 2016, https://doi.org/10.1080/01694243.2016.1185213
- A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams vol.318, pp.4-5, 2008, https://doi.org/10.1016/j.jsv.2008.04.056
- Free Vibration of Functionally Graded Truncated Conical Shells Using the GDQ Method vol.20, pp.1, 2013, https://doi.org/10.1080/15376494.2011.581415
- Nonlinear Vibration of PZT4/PZT-5H Monomorph and Bimorph Beams with Graded Microstructures vol.15, pp.07, 2015, https://doi.org/10.1142/S0219455415400155
- Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, https://doi.org/10.1142/S1758825117500764
- Free vibration of FGM plates with in-plane material inhomogeneity vol.92, pp.5, 2010, https://doi.org/10.1016/j.compstruct.2009.10.001
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- Free vibrations of AFG cantilever tapered beams carrying attached masses vol.61, pp.5, 2005, https://doi.org/10.12989/sem.2017.61.5.685
- A homogenized theory for functionally graded Euler-Bernoulli and Timoshenko beams vol.230, pp.10, 2019, https://doi.org/10.1007/s00707-019-02493-w
- Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment vol.8, pp.1, 2005, https://doi.org/10.12989/anr.2020.8.1.083
- On modal analysis of axially functionally graded material beam under hygrothermal effect vol.234, pp.5, 2005, https://doi.org/10.1177/0954406219888234
- Elasticity Solutions for In-Plane Free Vibration of FG-GPLRC Circular Arches with Various End Conditions vol.10, pp.14, 2005, https://doi.org/10.3390/app10144695
- Evaluation of the bending response of compact and thin-walled FG beams with CUF vol.28, pp.17, 2005, https://doi.org/10.1080/15376494.2019.1704951