References
- Babusa, I. (1973), 'The finite element method with Largrange multipliers', Numer. Math., 20, 179-192 https://doi.org/10.1007/BF01436561
- Bathe, K.J. (2001), 'The inf-sup condition and its evaluation for mixed finite element methods', J Comput. Struct., 79, 243-252 https://doi.org/10.1016/S0045-7949(00)00123-1
- Chia, C.Y. (1980), Nonlinear Analysis of Plates, McGraw-Hill
- Duan, M., Miyamoto, Y., Iwasaki, S. and Deto, H. (1998), 'Hybrid/mixed finite element analysis of circular plate bending based on Reissner-Mindlin theory', J of Structural and Construction Engineering (JSCE), 44A, 323-330
- Dumir, P.C. (1987), 'Circular plates on pasternak elastic foundations', Int. J. Numer. Anal. Methods Geomech., 11(1), 51-60 https://doi.org/10.1002/nag.1610110105
- Dumir, P.C. and Shingal, L. (1986), 'Nonlinear analysis of thick circular plates', J. Eng. Mech., 112(3),260-272 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:3(260)
- Hitoshi, W. (1980), 'Nonlinear analysis of plates and shells by the incremental procedure using a mixed model of the finite element method', Bulletin of the JSME. 23(186), 1945-1951 https://doi.org/10.1299/jsme1958.23.1945
- Hong, T (1999), 'Axisymmetric shells and plates on tensionless elastic foundations', Int. J. Solids Struct., 36(34), 5277-5300 https://doi.org/10.1016/S0020-7683(98)00228-5
- Khathlan, A.A. (1994), 'Large-deformation analysis of plates on unilateral elastic foundation', J. Eng. Mech., 120(8), 1820-1827 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1820)
- Kohnke, P. (1998), Theory Manual. Houston, PA. USA: ANSYS, Inc
- Kondo, K. and Pian, T.H.H. (1981) 'Large deformations of rigid-plastic circular plates', Int. J. Solids Struct., 17(11) 1043-1055 https://doi.org/10.1016/0020-7683(81)90012-3
- Kraytennan, B.L. and Fu, C.C. (1985), 'Nonlinear analysis of clamped circulars', J. Struct. Eng., 111(11), 2402-2415 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:11(2402)
- Michiya, K. (1993) 'Strain analysis of 3-dimensional elastic large deformation for a thick circular plate by convected coordinates (comparison with the classical plate theory), Nippon Kikai Gakkai Ronbunshu', A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 59(561), 1232-1237 https://doi.org/10.1299/kikaia.59.1232
- Pian, T.H.H. (1964), 'Derivation of element stiffness matrices by assumed stress distributions', AIAA 7, 1333-1335
- Pian, T.H.H. (1976), 'Variational principle for incremental finite element methods', Journal of The Franklin Institute, 302(5 & 6), 473-488 https://doi.org/10.1016/0016-0032(76)90037-5
- Pian, TH.H. (1996), 'Survey of hybrid/mixed finite element methods for plate and shell analysis', Third Asian Pacific Conf. on Computational Mechanics, 227-232
- Sansour, C. and Kollmann, F.G. (2000), 'Families of 4-node and 9-node finite elements for a finite deformation shell theory', Comput. Mech., 24, 435-447 https://doi.org/10.1007/s004660050003
- Stippes, M. and Hausrath, A.H. (1952), 'Large deflections of circular plates', Trans. ASME, J. Appl. Mech., 19, 187-292
- Szilard, R. (1974), Theory and Analysis ofPlates, Prentice-Hall, INC. Englewood Cliffs, New Jersey
- Takezono, S. (1980), 'Elasto/viscoplastic analysis of thin circular plates under large strains and large deformations', J. Appl. Mech., Transactions ASME, 47(4), 741-747 https://doi.org/10.1115/1.3153784
- Timoshenko, S. and Woinowsky-Kreiger, S. (1959), Theory of Plates and Shells, McGraw-Hill New York
- Turvey, G.J. and Salehi, M. (1997), 'Circular plates with one diametral stiffener - an elastic large deflection analysis', Comput. Struct., 63(4), 775-783 https://doi.org/10.1016/S0045-7949(96)00077-6
- Vallabhan, C.V (1994), 'Parametric study of axisymmetric circular-glass plates', J. Struct. Eng., 120(5), 16631671. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(120)
- Well,NA and Newmark, N.M. (1956), 'Large deflection of elliptical plates', Trans. ASME, J. Appl. Mech., 23, 21-26