DOI QR코드

DOI QR Code

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L. (Department of Civil Engineering, The University of Hong Kong)
  • 투고 : 2004.09.09
  • 심사 : 2005.03.31
  • 발행 : 2005.06.20

초록

The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

키워드

참고문헌

  1. Cardew, G.E., Goldthorpe, M.R., Howard, I.C. and Kfouri, A.P. (1984), On the Elastic T-term. Fundamentals of Deformation and Fracture, In: Bilby, B.A., Miller, K.J. and Willis, J.R. editors, Cambridge University Press, Cambridge
  2. Chen, C.S., Krause, R., Pettit, R.G., Banks-Sills, L. and Ingraffea, A.R. (2001), 'Numerical assessment of T-stress computation using a p-version finite element method', Int. J. Fracture, 107(2), 177-199 https://doi.org/10.1023/A:1007689311129
  3. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, 3rd Edition, John Wiley & Son, New York
  4. Cotterell, B. and Rice, J.R. (1980), 'Slightly curved or kinked cracks', Int. J. Fracture, 16(2), 155-169 https://doi.org/10.1007/BF00012619
  5. Eshelby, J.D. (1975), The Calculation of Energy Release Rates. In: Sih G.C., van Elst, H.C., Broek, D., editors. Prospects of Fracture Mechanics. Noordhoff International
  6. Fett, T. (1998), 'A compendium of T-stress solutions', Technical Report FZKA 6057, Institut fur Materialforschung
  7. Hu, C.B., Li, Y.T. and Gong, J. (1998), 'The transition method of geometrically similar element for dynamic crack problem', Fracture and Strength of Solids, Pts 1 and 2 Key Engineering Materials, 145-9, 267-272
  8. Karihaloo, B.L., Keer, L.M., Nemat-Nasser, S. and Oranratnachai, A. (1981), 'Approximate description of crack kinking and curving', J. Appl. Mech. -Transactions of the ASME, 48(3), 515-519 https://doi.org/10.1115/1.3157665
  9. Karihaloo, B.L. and Xiao, Q.Z. (2001), 'Higher order terms of the crack tip asymptotic field for a notched three-point- bend beam', Int. J. Fracture, 112(2), 111-128 https://doi.org/10.1023/A:1013392324585
  10. Kfouri, A.P. (1986), 'Some evaluations of the elastic T-term using Eshelby's method', Int. J. Fracture, 30(4), 301-315 https://doi.org/10.1007/BF00019710
  11. Larsson, S.G. and Carlsson, A.J. (1973), 'Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack-tips in elastic-plastic materials', J. of the Mechanics and Physics of Solids, 21(4) 263-277 https://doi.org/10.1016/0022-5096(73)90024-0
  12. Leevers, P.S. and Radon, J.C. (1982), 'Inherent stress biaxiality in various fracture specimen geometries', Int. J. Fracture, 19(4), 311-325 https://doi.org/10.1007/BF00012486
  13. Leung, A.Y.T., Dai, H., Fok, S.L. and Su, R.K.L. (2004), 'The fractal finite element method for unbounded problems', Int. J. for Numer. Meth. Eng., 61(7), 990-1008 https://doi.org/10.1002/nme.1097
  14. Leung, A.Y.T. and Su, R.K.L. (1994), 'Mode I crack problems by fractal two-level finite element methods', Engineering Fracture Mechanics, 48(6), 847-856 https://doi.org/10.1016/0013-7944(94)90191-0
  15. Leung, A.Y.T. and Su, R.K.L. (1995), 'Mixed mode two-dimensional crack problems by fractal two-level finite element method', Engineering Fracture Mechanics, 51(6), 889-895 https://doi.org/10.1016/0013-7944(95)00008-J
  16. Leung, A.Y.T. and Su, R.K.L. (1996), 'Fractal two-level finite element method for two-dimensional cracks', Microcomputers in Civil Engineering, 11(4), 249-257 https://doi.org/10.1111/j.1467-8667.1996.tb00327.x
  17. Leung, A.Y.T. and Wong, S.C. (1989), 'Two-level finite element method for plane cracks', Communications in Applied Numerical Methods, 5(4), 263-274 https://doi.org/10.1002/cnm.1630050407
  18. Melin, S. (2002), 'The influence of the T-stress on the directional stability of cracks', Int. J. Fracture, 114(3), 259-265 https://doi.org/10.1023/A:1015521629898
  19. Rice, J.R. (1974), 'Limitations to the small scale yielding approximation for crack tip plasticity', J. of the Mechanics and Physics of Solids, 22(1), 17-26 https://doi.org/10.1016/0022-5096(74)90010-6
  20. Sham, T.L. (1991), 'The determination of the elastic T-term using higher order weight functions', Int. J. Fracture, 48(2), 81-102 https://doi.org/10.1007/BF00018392
  21. Sherry, A.H., France, C.C. and Goldthorpe, M.R. (1995) 'Compendium of T-stress solutions for two and three-dimensional cracked geometries', Fatigue & Fracture of Engineering Materials & Structures, 18(1), 141-155 https://doi.org/10.1111/j.1460-2695.1995.tb00148.x
  22. Smith, D.J., Ayatollahi, M.R. and Pavier, M.J. (2001), 'The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading', Fatigue & Fracture of Engineering Materials & Structures, 24(2), 137-150 https://doi.org/10.1046/j.1460-2695.2001.00377.x
  23. Tan, C.L. and Wang, X. (2003), 'The use of quarter-point crack tip elements for T-stress determination in boundary element method analysis', Engineering Fracture Mechanics, 70(15), 2247-2252 https://doi.org/10.1016/S0013-7944(02)00251-5
  24. Tsang, D.K.L., Oyadiji, S.O. and Leung, A.Y.T. (2004), 'Applications of numerical eigenfunctions in the fractal-like finite element method', Int. J. Numer. Meth. Eng., 61(4), 475-495 https://doi.org/10.1002/nme.1071
  25. Ueda, Y., Ikeda, K. and Yao, T. (1983), 'Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads', Engineering Fracture Mechanics, 18(6), 1131-1158 https://doi.org/10.1016/0013-7944(83)90007-3
  26. Wang, X. (2002), 'Elastic T-stress for cracks in test specimens subjected to non-uniform stress distribution', Engineering Fracture Mechanics, 69(12), 1339-1352 https://doi.org/10.1016/S0013-7944(01)00149-7
  27. Williams, J.G. and Ewing, P.D. (1972), 'Fracture under complex stress - the angled crack problem', Int. J. Fracture Mechanics, 8(4), 441-446
  28. Williams, M.L. (1957), 'On the stress distribution at the base of a stationary crack', J. Appl. Mech., ASME, 24, 109-114
  29. Xie, J.F., Fok, S.L. and Leung, A.Y.T. (2003), 'A parametric study on the fractal finite element method for two-dimensional crack problems', Int. J. Numer. Meth. Eng., 58(4), 631-642 https://doi.org/10.1002/nme.793
  30. Zhong, W.F., Wu, Y.D., Wu, G.R. and Liang, Y.D. (2003), 'Analysis on acoustical scattering by a cracked elastic structure', ACTA Mechanica Solida Sinica, 16(3), 262-268

피인용 문헌

  1. Fracture behavior of nuclear graphite under three-point bending tests vol.186, 2017, https://doi.org/10.1016/j.engfracmech.2017.09.030