DOI QR코드

DOI QR Code

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A. (Department of Mechanical Engineering, Tarbiat Modarres University) ;
  • Khadem, S.E. (Department of Mechanical Engineering, Tarbiat Modarres University)
  • Received : 2004.06.22
  • Accepted : 2005.03.31
  • Published : 2005.06.20

Abstract

In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

Keywords

References

  1. Abbas, B.A.H. (1986), 'Dynamic analysis of thick rotating blades with flexible roots', Aeronaut. J., 89, 10-16
  2. Al-Bedoor, B.O. and Hamdan, M.N. (2001), 'Geometrically nonlinear dynamic model of a rotating flexible arm', J. Sound Vib., 240(1), 59-72 https://doi.org/10.1006/jsvi.2000.3199
  3. Bazoune, A., Khulief, Y.A, Stephan, N.G. and Mohiuddin, M.A. (2001), 'Dynamic response of spinning tapered Timoshenko beams using modal reduction', Finite Elements in Analysis and Design, 37, 199-219 https://doi.org/10.1016/S0168-874X(00)00030-5
  4. Boyce, E.W. and Goodwin, B.E. (1964), 'Random transverse vibration of elastic beams', SIAM J., 12, 613-629
  5. Chakraborty, S. and Dey, S.S. (1998), 'A stochastic finite element dynamic analysis of structures with uncertain parameters', Int. J. Mech Sci., 40(11), 1071-1087 https://doi.org/10.1016/S0020-7403(98)00006-X
  6. Chandiramani, N.K., Shete, C.D. and Librescu, L.I. (2003), 'Vibration of higher-order-shearable pretwisted rotating composite blades', Int. J. Mech. Sci., 45, 2017-2041 https://doi.org/10.1016/j.ijmecsci.2004.02.001
  7. Combou, B. (1975), 'Application of first order uncertainty analysis in the finite element method in linear elasticity', Proc. of 2nd Int. Conf. on Application of Statistics and Probability in Soil and Structure Engineering, England, 67-68
  8. Handa, K. and Anderson, K. (1981), 'Application of finite element method in the statistical analysis of structures', Proc. of 3rd Int. Conf. on Structural Safety and Reliability, Norway, 409-417
  9. Ishida, R. (2001), 'Stochastic finite element analysis of beam with statistical uncertainties', AlAA J., 39, 2192-2197
  10. Iwan, W.D. and Haung, C.T. (1996), 'On the dynamic response of non-linear systems with parameter uncertainty', Int. J. Non-Linear Mech., 31, 631-645 https://doi.org/10.1016/0020-7462(96)00027-3
  11. Jung, S.N., Nagaraj, V.T. and Chopra, I. (2001), 'Refined structural dynamics model for composite rotor blades', AIAA J., 39(2), 339-348 https://doi.org/10.2514/2.1310
  12. Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method, Chichester, Wiley
  13. Lee, S.Y. and Lin, S.M. (1994), 'Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root', J. Appl. Mech., ASME, 61, 949-955 https://doi.org/10.1115/1.2901584
  14. Lin, S.C. (2000), 'Sensitivity of dynamic behavior of random rotating Timoshenko beams to system parameter changes', J. Aerospace Engeering, 214, 247-257
  15. Lin, S.C. (2001), 'The probabilistic approach for rotating Timoshenko beams', Int. J. Solids Struct., 38(6), 7197-7213 https://doi.org/10.1016/S0020-7683(00)00326-7
  16. Lin, S.M., Lee, S.Y. and Wang, W.R. (2004), 'Dynamic analysis of rotating damped beams with an elastically restrained root', Int. J. Mech. Sci., 46, 673-693 https://doi.org/10.1016/j.ijmecsci.2004.05.011
  17. Liu, W.K., Belytschko, T. and Mani, A. (1986), 'Random field finite elements', Int. J. Num. Meth. Engng., 23, 1831-1845 https://doi.org/10.1002/nme.1620231004
  18. Pohit, G, Mallik, A.K. and Venkatesan, C. (1999), 'Free out-of-plane vibrations of a rotating beam with nonlinear elastomeric constraints', J. Sound Vib., 200, 1-25 https://doi.org/10.1006/jsvi.1996.0851
  19. Singh, M. (1985), 'Turbine blade dynamics- a probabilistic approach', The Tenth Biennial Conf. on Mechanical Vibration and Noise, Ohio, 41-48
  20. Vanmarcke, E.H. and Grigoriu, M. (1983), 'Stochastic finite element analysis of simple beams', J. Engng. Mech., ASCE, 109(5), 1203-1214 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  21. Yang, S.M. and Tsao, S.M. (1997), 'Dynamic of a pretwisted blade under nonconstant rotating speed', Comput. Struct., 62, 643-651 https://doi.org/10.1016/S0045-7949(96)00227-1
  22. Yokoyama, T. (1988), 'Free vibration characteristics of rotating Timoshenko beam', Int. J. Mech. Sci., 30(10), 743-755 https://doi.org/10.1016/0020-7403(88)90039-2

Cited by

  1. Stochastic elastic wave analysis of angled beams vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.767
  2. Large deflection model for nonlinear flexural vibration analysis of a highly flexible rotor-bearing system vol.134, 2017, https://doi.org/10.1016/j.ijmecsci.2017.09.039
  3. Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions vol.82, 2014, https://doi.org/10.1016/j.mechmachtheory.2014.08.005
  4. Vibration and reliability of a rotating beam with random properties under random excitation vol.49, pp.12, 2007, https://doi.org/10.1016/j.ijmecsci.2007.04.008
  5. Primary resonances of a nonlinear in-extensional rotating shaft vol.45, pp.8, 2010, https://doi.org/10.1016/j.mechmachtheory.2010.03.012
  6. Nonlinear Frequencies and Unbalanced Response Analysis of High Speed Rotor-Bearing Systems vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.089
  7. Vibration analysis of geometrically nonlinear spinning beams vol.78, 2014, https://doi.org/10.1016/j.mechmachtheory.2014.02.015
  8. Multiple scales solution for free vibrations of a rotating shaft with stretching nonlinearity vol.20, pp.1, 2013, https://doi.org/10.1016/j.scient.2012.12.004
  9. Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia vol.44, pp.1, 2009, https://doi.org/10.1016/j.mechmachtheory.2008.01.007
  10. Analytical solution for primary resonances of a rotating shaft with stretching non-linearity vol.222, pp.9, 2008, https://doi.org/10.1243/09544062JMES923
  11. Combination resonances in a rotating shaft vol.44, pp.8, 2009, https://doi.org/10.1016/j.mechmachtheory.2008.12.007
  12. Two-mode combination resonances of an in-extensional rotating shaft with large amplitude vol.65, pp.3, 2011, https://doi.org/10.1007/s11071-010-9884-2
  13. Free vibration analysis of rotating tapered blades using Fourier-p superelement vol.27, pp.2, 2005, https://doi.org/10.12989/sem.2007.27.2.243
  14. A Collocation Approach for Finite Element Basis Functions for Euler-Bernoulli Beams Undergoing Rotation and Transverse Bending Vibration vol.13, pp.4, 2012, https://doi.org/10.1080/15502287.2012.682194
  15. Minimum Diameter of Optimally Located Damping Wire to Maximize the Fundamental Frequencies of Rotating Blade Using Timoshenko Beam Theory vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421500905