DOI QR코드

DOI QR Code

Direct determination of influence lines and surfaces by F.E.M.

  • Orakdogen, Engin (Faculty of Civil Engineering, Technical University of Istanbul) ;
  • Girgin, Konuralp (Faculty of Civil Engineering, Technical University of Istanbul)
  • Received : 2004.06.14
  • Accepted : 2005.03.16
  • Published : 2005.06.20

Abstract

In this study, element loading matrices are defined for static application of classical M$\ddot{u}$ller-Breslau principle to finite element method. The loading matrices are derived from existing element matrices using Betti's law and known governing equations of F.E.M. Thus, the ordinates of influence lines and influence surfaces may be easily obtained from structural analysis for the loading matrices derived from governing equations, instead of through introduced unit force or displacement techniques. An algorithm for a computer program and comparative numerical examples are also presented to illustrate the procedure for determination of influence line and surface ordinates.

Keywords

References

  1. Akesson, B.A., Bjarnehed, H.L., Andersson, H.O. and Josefson, B.L. (1995), 'Routine FE determination of stress intensity factors using Muller-Breslau influence function technique', Fatique Fract. Engng. Mater. Struct., 18, 1115-1132 https://doi.org/10.1111/j.1460-2695.1995.tb00843.x
  2. Belegundu, A.D. (1986), 'Interpreting adjoint equations in structural optimization', J. Struct. Eng., ASCE, 112(8), 1971-1976 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:8(1971)
  3. Belegundu, A.D. (1988), 'The adjoint method for determining influence lines', Comput. Struct., 29(2), 345-350 https://doi.org/10.1016/0045-7949(88)90269-6
  4. Bogner, F.K., Fox, R.L. and Schmit, L.A. (1965), 'The generation of inter-element-compatible stiffness and mass matrices by the use of interpolation formulas', Proc. of Conf. on Math. Meth. in Struc. Mech., Wright-Patterson AFB, Ohio
  5. Cifuentes, A. and Paz, M. (1991), 'A note on the determination of influence lines and surfaces using finite elements', Finite Elements in Analysis and Design, 7, 299-305 https://doi.org/10.1016/0168-874X(91)90045-Z
  6. Fu, H. (1973), 'Indirect structural analysis by finite element method', Proc. ASCE, J. Struct. Div., 99(ST1), 91-111
  7. Ghali, A. and Neville, A.M. (1978), Structural Analysis, Chapman and Hall, London
  8. Hanson, J.H., Bittencourt, T.N. and Ingraffea, A.R. (2004), 'Three-dimensional influence coefficient method for cohesive crack simulations', Engineering Fracture Mechanics, 71, 2109-2124 https://doi.org/10.1016/j.engfracmech.2003.12.008
  9. Irons, B. and Ahmad, S. (1986), Techniques of Finite Elements, Ellis Horwood Limited, Market Cross House, Cooper Street, Chichester, West Sussex, PO191EB, England
  10. Kwak, H. and Song, J. (2001), 'Live load design moments for parking garage slabs considering support deflection effect', Comput. Struct., 79, 1735-1751 https://doi.org/10.1016/S0045-7949(01)00108-0
  11. Mc Cormac, J.C. (1984), Structural Analysis, Harper & Row, New York, 4th edition
  12. Memari, A.M. and West, H.H. (1991), 'Computation of bridge design forces from influence surfaces', Comput. Struct., 38(5/6), 547-556 https://doi.org/10.1016/0045-7949(91)90006-8
  13. Pucher, A. (1977), Influence Surface of Elastic Plates. Berlin: Springer
  14. Shen, W. (1992), 'The generalized Muller-Breslau principle for higher-order elements', Comput. Struct., 44, 207-212 https://doi.org/10.1016/0045-7949(92)90239-V
  15. Yamashita, Y., Shinozaki, M., Ueda, Y. and Sakano, K. (2004), 'Fatique crack growth life prediction for surface crack located in stress concentration part based on the three-dimensional finite element method', Transactions of ASME, 126, 160-166

Cited by

  1. Dependency of modeling parameters for the construction of influence surfaces by the finite element method vol.34, pp.1, 2018, https://doi.org/10.1007/s00366-017-0531-0
  2. Influence surfaces by boundary element/least square methods coupling vol.32, pp.2, 2016, https://doi.org/10.1007/s00366-015-0412-3
  3. Utilisation du quadrangle « discrete shear » pour la génération des surfaces d’influence des efforts de plaque vol.17, pp.4, 2008, https://doi.org/10.3166/remn.17.495-527