DOI QR코드

DOI QR Code

Dynamic stability of a viscoelastically supported sandwich beam

  • Ghosh, Ranajay (Theoretical and Applied Mechanics, Cornell University) ;
  • Dharmavaram, Sanjay (Department of Mechanical Engineering, Indian Institute of Technology) ;
  • Ray, Kumar (Department of Mechanical Engineering, Indian Institute of Technology) ;
  • Dash, P. (A.T. - Bidyadharpur Sasam)
  • 투고 : 2003.11.13
  • 심사 : 2004.11.19
  • 발행 : 2005.03.30

초록

The parametric dynamic stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load is investigated. A set of Hill's equations are obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of shear parameter, support characteristics, various geometric parameters and excitation force on the zones of instability are investigated.

키워드

참고문헌

  1. Abbas, B.A.H. (1984), 'Vibrations of Timoshenko beams with elastically restrained ends', J. Sound Vib., 97(4), 541-548 https://doi.org/10.1016/0022-460X(84)90508-X
  2. Cortinez, V.H. and Laura, P.A.A. (1985), 'Vibrations and buckling of a non-uniform beam elastically restrained against rotation and with concentrated mass at the other', J. Sound Vib., 99(1), 144-148 https://doi.org/10.1016/0022-460X(85)90453-5
  3. Habip, L.M. (1965), 'A survey of modem developments in the analysis of sandwich structures', Appl. Mech. Review, 18, 93-98
  4. Kar, R.C. and Ray, K. (1995), 'Parametric stability of a pretwisted, three layered symmetric sandwich beam', J. Sound Vib. 182(4), 591-606
  5. Kar, R.C, and Sujata, T. (1988), 'Parametric instability of a non-uniform beam with thermal gradient and elastic support journal', J. Sound Vib., 122(2), 209-215 https://doi.org/10.1016/S0022-460X(88)80349-3
  6. Kar, R.C. and Sujata, T. (1990), 'Parametric instability of an elastic restrained cantilever beam', Comput. Struct., 34(3), 469-475 https://doi.org/10.1016/0045-7949(90)90271-3
  7. Kerwin, E.M. Jr. (1959), 'Damping of flexural waves by a constrained viscoelastic layer', The J. of the Acoustical Society of America, 316, 952-962
  8. Leipholz, H. (1987), Stability Theory, Wiley, N.Y.
  9. Lin, C.Y. and Chen, L.W. (2002), 'Dynamic stability of rotating composite beams with a viscoelastic core', Comp. Struct., 58, 185-194 https://doi.org/10.1016/S0263-8223(02)00127-7
  10. Lin, C.Y and Chen, L.W. (2003), 'Dynamic stability of a rotating beam with a constrained damping layer', J. Sound Vib., 267, 209-225 https://doi.org/10.1016/S0022-460X(02)01427-X
  11. Maurizi, M.J., Bambill de Rossit, D.Y. and Laura, P.A.A. (1988), 'Free and forced vibrations of beams elastically restrained against translation and rotation at the ends', J. Sound Vib., 120(3), 626-630 https://doi.org/10.1016/S0022-460X(88)80234-7
  12. Metrikine, A.V. and Dieterman, H.A. (1997), 'Instability of vibrations of a mass moving uniformly along an axially compressed beam on a viscoelastic foundation', J. Sound Vib., 201(5), 567-576 https://doi.org/10.1006/jsvi.1996.0783
  13. Metrikine, A.V. and Verichev, S.N. (2001), 'Instability of vibrations of a moving two mass oscillator on a flexibly supported Timoshenko beam', Arch. of Appl. Mech., 71(9), 613-624 https://doi.org/10.1007/s004190100177
  14. Saito, H. and Otomi, K. (1979), 'Parametric responce of viscoelastically supported beams', J. Sound Vib., 63(2), 169-178 https://doi.org/10.1016/0022-460X(79)90874-5
  15. Verichev, S.N. and Metrikine, A.V. (2003), 'Instability of vibrations of a mass that moves uniformly along a beam on a periodically homogeneous foundation', J. Sound Vib., 260(5), 901-925 https://doi.org/10.1016/S0022-460X(02)00936-7
  16. Zheng, D.Y., Au, E.T.K. and Cheung, Y.K. (2000), 'Vibration of vehicle on compressed rail on viscoelastic foundation', J. Engg. Mech., ASCE, 126(11), 1141-1147 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:11(1141)

피인용 문헌

  1. Analysis of Static Instability of an Asymmetric, Rotating Sand-Wich Beam vol.2012, 2012, https://doi.org/10.1155/2012/191042
  2. Static stability of a viscoelastically supported asymmetric sandwich beam with thermal gradient vol.6, pp.3, 2014, https://doi.org/10.1007/s40091-014-0065-2
  3. Parametric Instability of an Asymmetric Sandwich Beam with Thermal Gradient under Various Boundary Conditions by Computational Method vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.114
  4. Stability Study of a Sandwich Beam with Asymmetric and Non-uniform Configuration Supported Viscoelastically Under Variable Temperature Grade vol.7, pp.2, 2005, https://doi.org/10.1007/s42417-019-00087-3
  5. Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations vol.72, pp.4, 2005, https://doi.org/10.12989/sem.2019.72.4.525