DOI QR코드

DOI QR Code

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan (Department of Civil Engineering, The University of Tokyo) ;
  • Noh, Hyuk-Chun (Department of Civil Engineering and Engineering Mechanics, Columbia University) ;
  • Kim, Sun-Hoon (Department of Civil Engineering, Youngdong University) ;
  • Han, In-Seon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2003.05.14
  • Accepted : 2004.02.25
  • Published : 2005.03.30

Abstract

In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

Keywords

References

  1. Aldraihem, O.J., Wetherhold, R.C. and Singh, T. (1997), 'Distributed control of laminated beams: Timoshenko theory vs. Euler-Bernoulli theory', J. Intelligent Mat. Sys. Struct., 8, 150-157
  2. Allik, H. and Hughes, T.J.R. (1970), 'Finite element method for piezoelectric vibration', Int. J. Numer. Meth. Eng., 2, 151-157 https://doi.org/10.1002/nme.1620020202
  3. Baz, A. and Ro, J. (1996), 'Vibration control of plates with active constrained layer damping', Smart Mater. Struct., 5, 272-280 https://doi.org/10.1088/0964-1726/5/3/005
  4. Benjeddou, A., Trindade, M.A. and Ohayon, R. (1997), 'A unified beam finite element model for extension and shear piezoelectric actuation mechanisms', J. Intelligent Mat. Sys. Struct., 8, 1012-1025 https://doi.org/10.1177/1045389X9700801202
  5. Benjeddou, A., Trindade, M.A. and Ohayon, R. (1999), 'New shear actuated smart structure beam finite element', AIAA J., 37(3), 378-383 https://doi.org/10.2514/2.719
  6. Benjeddou, A. (2000), 'Advances in piezoelectric finite element modeling of adaptive structural elements: A survey', Comput. Struct., 76(1-3), 347-363 https://doi.org/10.1016/S0045-7949(99)00150-9
  7. Carpenter, M.J. (1997), 'Using energy methods to derive beam finite elements incorporating piezoelectric materials', J. Intelligent Mat. Sys. Struct., 8, 26-40 https://doi.org/10.1177/1045389X9700800104
  8. Chen, S.H., Wang, Z.D. and Liu, X.H. (1997), 'Active vibration control and suppression for intelligent structures', J. Sound Vib., 200(2), 167-177 https://doi.org/10.1006/jsvi.1996.0694
  9. Chen, S.H., Yao, G.F. and Lian, H.D. (2001), 'A new piezoeletric shell element and its application in static shape control', Struct. Eng. Mech., An Int. J., 12(5), 491-506 https://doi.org/10.12989/sem.2001.12.5.491
  10. Clark, R.L., Saunders, W.R. and Gibbs, G.P. (1998), Adaptive Structures: Dynamics and Control, John Wiley & Sons, Canada
  11. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, 3rd Edition, John Wiley & Sons., USA
  12. Griffiths, D.J. (1981), Introduction to Electrodynamics, Prentice-Hall, USA
  13. Ha, S.K., Keilers, C. and Chang, F.K. (1992), 'Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators', AIAA J., 30(3), 772-780 https://doi.org/10.2514/3.10984
  14. Hughes, TJ.R. (1987), The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, USA
  15. Hwang, W.S. and Park, H.C. (1993), 'Finite element modeling of piezoelectric sensors and actuators', AJAA J., 31(5), 930-937
  16. Lesieutre, A. and Lee, U. (1996), 'A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics', Smart Mater. Struct., 5, 615-627 https://doi.org/10.1088/0964-1726/5/5/010
  17. Lin, C.C. and Huang, R.N. (1999), 'Vibration control of beam-plates with bonded piezoelectric sensors and actuators', Comput. Struct., 73(1-5), 239-248 https://doi.org/10.1016/S0045-7949(99)00075-9
  18. Lin, Q.R., Jin, Z.L. and Liu, Z.X. (2000), 'An analytical solution to the laminated piezoelectric beam under the electric field', Struct. Eng. Mech., An Int. J., 10(3), 289-298 https://doi.org/10.12989/sem.2000.10.3.289
  19. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited, UK
  20. Peng, X.Q., Lam, K.Y. and Liu, G.R. (1998), 'Active vibration control of composite beams with piezoelectrics: A finite element model with third order theory', J. Sound Vib., 209(4), 635-650 https://doi.org/10.1006/jsvi.1997.1249
  21. Ray, M.C., Bhattacharyya, R. and Samanta, B. (1994), 'Static analysis of an intelligent structure by the finite element method', Comput. Struct., 52(4), 617-631 https://doi.org/10.1016/0045-7949(94)90344-1
  22. Robbins, D.H. and Reddy, J.N. (1991), 'Analysis of piezoelectrically actuated beams using a layer-wise displacement theory', Comput. Struct., 41(2), 265-279 https://doi.org/10.1016/0045-7949(91)90430-T
  23. Shen, M.H.H. (1995), 'A new modeling technique for piezoelectrically actuated beams', Comput. Struct., 57(3), 361-366 https://doi.org/10.1016/0045-7949(95)00042-F
  24. Smyser, C.P. and Chandrashekhara, K. (1997), 'Robust vibration control of composite beams using piezoelectric devices and neural networks', Smart Mater. Struct., 6, 178-189 https://doi.org/10.1088/0964-1726/6/2/007
  25. Surace, G., Cardascia, L. and Anghel, V (1997), 'Finite element formulation for piezoelectrically actuated timoshenko beam', The 7-th Int. Conf Adapt. Struct. Basel: Technomic, 6, 498-507
  26. Tseng, C.I. (1989), 'Electromechanical dynamics of a coupled piezoelectric/mechanical system applied to vibration control and distributed sensing', Ph.D. Dissertation, University of Kentucky, USA
  27. Tzou, H.S. and Tseng, C.I. (1991), 'Distributed vibration control and identification of coupled elastic/ piezoelectric systems: Finite element formulation and application', Mech. Systems Signal Process, 5, 215-231 https://doi.org/10.1016/0888-3270(91)90044-6

Cited by

  1. Design on a new oil well test shock absorber under impact load vol.28, pp.3, 2008, https://doi.org/10.12989/sem.2008.28.3.335