References
- Chucheepsakul, S., Buncharoen, S. and Huang, T. (1995), 'Elastica of simple variable-are-length beam subjected to end moment', J. Engrg. Mech., 121(7), 767-772 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(767)
- Chucheepsakul, S., Theppitak, G. and Wang, C.M. (1996), 'Large deflection of simple variable-are-length beams subjected to a point load', Struet. Engrg. Mech., 4(1),49-59
- Chucheepsakul, S., Theppitak, G. and Wang, C.M. (1997a), 'Exact solution of variable-are-length elastica under moment gradient', Struet. Engrg. Mech., 5(5), 529-539
- Chucheepsakul, S. and Huang, T. (1997b), 'Finite element solution of variable-are-length beam under a point load', J. Struet. Engrg., 123(7), 968-970 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(968)
- Chucheepsakul, S., Wang, C.M., He, X.Q. and Monprapussom, T.(1999), 'Double curvature bending of variable-are-length elasticas', J. Appl. Mech., 66, 87-94 https://doi.org/10.1115/1.2789173
- Golley, B.W. (1997), 'The solution of open and closed elasticas using intrinsic coordinate finite elements', J. Comp. Meth. Appl. Mech. Engrg., 146,127-134 https://doi.org/10.1016/S0045-7825(96)01231-5
- Hartono, W (2000), 'Behavior of variable-are-length elastica with frictionless support under follower force', Mech. Res. Comm., 27(6), 653-658 https://doi.org/10.1016/S0093-6413(00)00142-7
- Huang, T. and Chucheepsakul, S. (1985), 'Large displacement analysis of a marine riser', J. Energy Resources Tech., 107(3), 54-59 https://doi.org/10.1115/1.3231163
- Malvern, L.E. (1969), Introduction to the Mechanics of Continuous Media, Prentice-Hall, Inc
- Neider, J.A. and Meade, R. (1965), 'A simplex method for the function minimization', Comp. J., 7, 308-313 https://doi.org/10.1093/comjnl/7.4.308
- Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P. (1992), Numerical Recipes in Fortran, 2nd ed., Cambridge University Press
- Wang, C.M., Lam, K.Y., He, X.Q. and Chucheepsakul, S. (1997), 'Large deflections of an end supported beam subjected to a point load', Int. J. Nonl. Mech., 32(1), 63-72 https://doi.org/10.1016/S0020-7462(96)00017-0
Cited by
- Elliptic integral solution of the extensible elastica with a variable length under a concentrated force vol.222, pp.3-4, 2011, https://doi.org/10.1007/s00707-011-0520-0
- Effect of Material Nonlinearity on Large Deflection of Variable-Arc-Length Beams Subjected to Uniform Self-Weight vol.2012, 2012, https://doi.org/10.1155/2012/345461
- Collapse of Heavy Cantilevered Elastica With Frictional Internal Support vol.78, pp.4, 2011, https://doi.org/10.1115/1.4003755
- Effect of inclination on bending of variable-arc-length beams subjected to uniform self-weight vol.30, pp.4, 2008, https://doi.org/10.1016/j.engstruct.2007.04.010
- Large deformation and stability of an extensible elastica with an unknown length vol.48, pp.9, 2011, https://doi.org/10.1016/j.ijsolstr.2011.01.015
- Elastica of a variable-arc-length circular curved beam subjected to an end follower force vol.49, 2013, https://doi.org/10.1016/j.ijnonlinmec.2012.10.002
- Variable-Length Link-Spring Model for Kink Formation During Wire Bonding vol.135, pp.4, 2013, https://doi.org/10.1115/1.4025308
- Post-Buckling Analysis of a Uniform Self-Weight Beam with Application to Catenary Riser pp.1793-6764, 2019, https://doi.org/10.1142/S0219455419500470
- Large deflections of spatial variable-arc-length elastica under terminal forces vol.32, pp.4, 2005, https://doi.org/10.12989/sem.2009.32.4.501
- Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material vol.35, pp.6, 2005, https://doi.org/10.12989/sem.2010.35.6.677