References
- ANSYS. (1998), Ansys User's Manual, v. 5.5
- Auricchio, F. and Taylor, R.L. (1994), 'A shear deformable plate element with an exact thin limit', Comput. Meth. Appl. Mech. Eng., 118, 393-412 https://doi.org/10.1016/0045-7825(94)90009-4
- Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), 'The MITC7 and MITC9 plate bending element', Comput. Struct., 32, 797-814 https://doi.org/10.1016/0045-7949(89)90365-9
- Bathe, K.J. and Dvorkin, E.N. (1985), 'A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation', Int. J. Num. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
- Batoz, J.L. (1982), 'An explicit formulation for an efficient triangular plate-bending element', Int. J. Num. Meth. Eng., 18, 1077-1089 https://doi.org/10.1002/nme.1620180711
- Batoz, J.L. and Lardeur, P. (1989), 'A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates', Int. J. Num. Meth. Eng., 28, 533-560 https://doi.org/10.1002/nme.1620280305
-
Belytschko, T, Stolarski, H. and Carpenter, N. (1984), 'A
$C^0$ triangular plate element with one-point quadrature', Int. J. Num. Meth. Eng., 20, 787-802 https://doi.org/10.1002/nme.1620200502 - Belytschko, T. and Wong, B.K. (1989), 'Assumed strain stabilization procedure for the 9-node Lagrange shell element', Int. J. Num. Meth. Eng., 28, 385-414 https://doi.org/10.1002/nme.1620280210
- Brezzi, F., Bathe, K.J. and Fortin, M. (1989), 'Mixed-interpolated elements for Reissner/Mindlin plates', Int. J. Num. Meth. Eng., 28,1787-1801 https://doi.org/10.1002/nme.1620280806
- Choi, C.K. and Park, Y.M. (1999), 'Quadratic NMS Mindlin-plate-bending element', Int. J. Num. Meth. Eng., 46, 1273-1289 https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, John Wiley & Sons
- Crisfield, M.A. (1984), 'A quadratic Mindlin element using shear constraints', Comput. Struct., 18(5), 833-852 https://doi.org/10.1016/0045-7949(84)90030-0
- Crisfield, M.A. (1986), Finite Elements and Solution Procedures for Structural Analysis, Pineridge Press, Swansea, U.K.
- de Veubeke, B.F. (1965), 'Displacement and equilibrium models in the finite element method', in Stress Analysis: Recent Developments in Numerical and Experimental Methods, O.C. Zienkiewicz and G.S. Holister, eds., John Wiley & Sons, London, 145-197
- Greimann, L.F. and Lynn, P.P. (1970), 'Finite element analysis of plate bending with transverse shear deformation', Nucl. Eng. Des., 14,223-230 https://doi.org/10.1016/0029-5493(70)90101-9
- Hughes, T.J.R. and Cohen, M. (1978), 'The 'heterosis' finite element for plate bending', Comput. Struct., 9, 445-450 https://doi.org/10.1016/0045-7949(78)90041-X
- Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), 'A simple and efficient finite element for plate bending', Int. J. Num. Meth. Eng., 11, 1529-1543 https://doi.org/10.1002/nme.1620111005
- Hughes, TJ.R. and Tezduyar, T.E. (1981), 'Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element', J. Appl. Mech., 48, 587-596 https://doi.org/10.1115/1.3157679
- Ibrahimbegovic, A. and Frey, F. (1994), 'Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics', Int. J. for Numerical and Analytical Methods in Geomechanics, 37, 3659-3683
- Liu, J., Riggs, H.R. and Tessler, A. (2000), 'A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints', Int. J. Num. Meth. Eng., 49(8), 1065-1086 https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
- Liu, Y.J. (2002), 'Development of the MIN-N family of triangular anisoparametric Mindlin plate elements', Ph.D. dissertation, University of Hawaii at Manoa, Honolulu
- Liu, Y.J. and Buchanan, G.R. (2004), 'Free vibration of stepped cantilever Mindlin plates', J. Sound Vib., 271, 1083-1092 https://doi.org/10.1016/S0022-460X(03)00777-6
- Liu, Y.J., Riggs, H.R. and Tessler, A. (1998), 'A 4-node anisoparametric Mindlin plate element based on the Tessler 3-node element', UHM/CE/98-01, University of Hawaii at Manoa, Honolulu
- MacNeal, R.H. (1978), 'A simple quadrilateral shell element', Comput. Struct., 8, 175-183 https://doi.org/10.1016/0045-7949(78)90020-2
- MacNeal, R.H. (1982), 'Derivation of element stitfuess matrices by assumed strain distributions', Nucl. Eng. Des., 70, 3-12 https://doi.org/10.1016/0029-5493(82)90262-X
- MacNeal, R.H. and Harder, R.L. (1985), 'A proposed standard set of problems to test finite element accuracy', Finite Elem. Anal. Design, 1, 3-20 https://doi.org/10.1016/0168-874X(85)90003-4
- Morley, L.S.D. (1963), Skew Plates and Structures, MacMillan, New York
- Pugh, E.D.L., Hinton, E. and Zienkiewicz, O.C. (1978), 'A study of quadrilateral plate bending elements with 'reduced' integration', Int. J. Num. Meth. Eng., 12, 1059-1079 https://doi.org/10.1002/nme.1620120702
- Riggs, H.R., Tessler, A and Chu, H. (1997), 'C1-continuous stress recovery in finite element analysis', Comput. Meth. Appl. Mech. Eng., 143(3/4), 299-316 https://doi.org/10.1016/S0045-7825(96)01151-6
- Roark, R.J. and Young, W.C. (1975), Formulas for Stress and Strain, McGraw-Hill Book Company, New York
- Sheikh, AH. and Dey, P. (2001), 'A new triangular element for the analysis of thick and thin plates', Comm. Num. Meth. Engr., 17, 667-673 https://doi.org/10.1002/cnm.440
-
Sze, K.Y. (1997), 'Quadratic triangular
$C^0$ plate bending element', Int. J. Num. Meth. Eng., 40, 937-95l https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<937::AID-NME96>3.0.CO;2-N - Sze, K.Y. and Zhu, D. (1998), 'A quadratic assumed natural strain triangular element for plate bending analysis', Comm. Num. Meth. Engr., 14, 1013-1025 https://doi.org/10.1002/(SICI)1099-0887(199811)14:11<1013::AID-CNM204>3.0.CO;2-V
- Taylor, R.L. and Auricchio, F. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part II. A simple triangle', Int. J. Num. Meth. Eng., 36, 3057-3066 https://doi.org/10.1002/nme.1620361803
- Tessler, A. (1982), 'On a conforming, Mindlin-type plate element', in The Mathematics of Finite Elements and Applications IV, J.R. Whiteman, ed., Academic Press, London, 119-126
- Tessler, A. (1985), 'A priori identification of shear locking and stiffening in triangular Mindlin elements', Comput. Meth. Appl. Mech. Eng., 53(2), 183-200 https://doi.org/10.1016/0045-7825(85)90005-2
-
Tessler, A. (1990), 'A
$C^0$ -anisoparametric three-node shallow shell element', Comput. Meth. Appl. Mech. Eng., 78,89-103 https://doi.org/10.1016/0045-7825(90)90154-E - Tessler, A. and Dong, S.B. (1981), 'On a hierarchy of conforming Timoshenko beam elements', Comput. Struct., 14(3-4), 335-344 https://doi.org/10.1016/0045-7949(81)90017-1
- Tessler, A. and Hughes, T.J.R. (1983), 'An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element', Comput. Meth. Appl. Mech. Eng., 39, 311-335 https://doi.org/10.1016/0045-7825(83)90096-8
- Tessler, A. and Hughes, T.J.R. (1985), 'A three-node Mindlin plate element with improved transverse shear', Comput. Meth. Appl. Mech. Eng., 50, 71-101. https://doi.org/10.1016/0045-7825(85)90114-8
- Tessler, A., Riggs, H.R., Freese, C.E. and Cook, a.M. (1998), 'An improved variational method for finite element stress recovery and a posteriori error estimation', Comput. Meth. Appl. Mech. Eng., 155, 15-30 https://doi.org/10.1016/S0045-7825(97)00135-7
- Tessler, A, Riggs, H.R. and Macy, S.C. (1994), 'A variational method for finite element stress recovery and error estimation', Comput. Meth. Appl. Mech. Eng., 111, 369-382 https://doi.org/10.1016/0045-7825(94)90140-6
- Xu, Z. (1992), 'A thick-thin triangular plate element', Int. J. Num. Meth. Eng., 33, 963-973 https://doi.org/10.1002/nme.1620330506
- Yazdani, A.A., Riggs, H.R. and Tessler, A. (2000), 'Stress recovery and error estimation for shell structures', Int. J. Num. Meth. Eng., 47, 1825-1840 https://doi.org/10.1002/(SICI)1097-0207(20000420)47:11<1825::AID-NME820>3.0.CO;2-6
- Zienkiewicz, O.C. and Lefebvre, D. (1988), 'A robust triangular plate bending element of the Reissner-Mindlin type', Int. J. Num. Meth. Eng., 26, 1169-1184 https://doi.org/10.1002/nme.1620260511
- Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part I. A simple quadrilateral', Int. J. Num. Meth. Eng., 36, 3043-3056 https://doi.org/10.1002/nme.1620361802
Cited by
- Higher-order linked interpolation in triangular thick plate finite elements vol.31, pp.1, 2014, https://doi.org/10.1108/EC-03-2012-0056
- On the application of piezolaminated composites to diaphragm micropumps vol.99, 2013, https://doi.org/10.1016/j.compstruct.2012.11.041
- Higher-order hybrid stress triangular Mindlin plate element vol.58, pp.6, 2016, https://doi.org/10.1007/s00466-016-1322-y
- Higher-order linked interpolation in quadrilateral thick plate finite elements vol.51, 2012, https://doi.org/10.1016/j.finel.2011.10.003
- High-order quasi-conforming triangular Reissner-Mindlin plate element vol.35, pp.8, 2005, https://doi.org/10.1108/ec-11-2017-0446