DOI QR코드

DOI QR Code

Analysis of the in-plane shear behaviour of FRP reinforced hollow brick masonry walls

  • Gabor, A. (Laboratoire Mecanique Materiaux Structures (L2MS)) ;
  • Ferrier, E. (Laboratoire Mecanique Materiaux Structures (L2MS)) ;
  • Jacquelin, E. (Laboratoire Mecanique Materiaux Structures (L2MS)) ;
  • Hamelin, P. (Laboratoire Mecanique Materiaux Structures (L2MS))
  • Received : 2003.05.26
  • Accepted : 2004.03.02
  • Published : 2005.02.20

Abstract

This paper presents an experimental as well as a numerical analysis of the in-plane shear behaviour of hollow, $870{\times}840{\times}100mm$ masonry walls, externally strengthened with FRP composites. The experimental approach is devoted to the evaluation of the effectiveness of different composite strengthening configurations and the methodology consists in the diagonal compression of masonry walls. The numerical study assesses the stress and strain state distribution in the unreinforced and strengthened panels using a commercial finite element code. The effect of FRP reinforcement on the masonry behaviour and the capability of modelling to forecast a representative failure mode of the unreinforced and reinforced masonry walls is investigated.

Keywords

References

  1. Albert, M., Elwi, A. and Cheng, J. (2001), 'Strengthening of unreinforced masonry walls using FRPs', J. Compos. Constr., 5(2), 76-84 https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(76)
  2. Corradi, M., Borri, A. and Vignoli, A. (2002), 'Strengthening techniques tested on masonry stuctures struck by the Umbria-Marche earthquake of 1997-1998', Construction and Building Materials, 16, 229-239 https://doi.org/10.1016/S0950-0618(02)00014-4
  3. Delmotte, P., Lugez, J. and Merlet, J. (1992), 'Resistance des maconneries sous charges verticales', Cahiers du CSTB, Cahier 2553 (Iivraison 326), in French
  4. Ehsani, M., Saadatmanesh, H. and Velasquez, J. (1999), 'Behavior of retrofitted URM walls under simulated earthquake loading', J. Compos. Constr., 3(3), 134-142 https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(134)
  5. FEMA 306 (1999), 'Evaluation of earthquake damaged concrete and masonry wall buildings-basic procedures', Technical Report, Federal Emergency Management Agency, Applied Technology Council
  6. Gabor, A. (2002), 'Contribution a la caracterisation et a la modelisation des maconneries non-renforcees et renforcees par materiaux composites', Ph.D. Thesis, Universite Lyon 1, France
  7. Gabor, A., Ferrier, E., Jacquelin, E. and Hamelin, P. (2004), 'Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels', Construction and Building Materials, (in press)
  8. Gambarotta, L. and Lagomarsino, S. (1997), 'Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications.' Earthq. Eng. Struct. Dyn., 26, 423-439 https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<423::AID-EQE650>3.0.CO;2-#
  9. Hamelin, P. (1998), 'Composite infrastructure applications: concept, design, durability control and prediction', J. Compos. Technol. Res.
  10. Hendry, A., Sinha, B. and Davies, S. (1997), Design of Masonry Structures, E & FN Spon, London, UK.
  11. Lee, J., Pande, G., Midleton, J. and Kralj, B. (1996), 'Numerical modelling of brick masonry panels subject to lateral loadings', Comput. Struct., 61(4), 735-745 https://doi.org/10.1016/0045-7949(95)00361-4
  12. Lopez, J., Oller, S., Onate, E. and Lubliner, J. (1999), 'A homogenous constitutive model for masonry', Int. J. Num. Meth. Eng., 46, 1651-1671 https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2
  13. Lourenco, P.B. (1996), 'Computational strategies for masonry structures', Ph.D. Thesis, Technical University Delft, Delft University Press, The Netherlands
  14. Marzahn, G. (1998), 'The shear strength of dry-stacked masonry walls', LACER, (3), 247-263, Institut fur Massivbau und Baustofftechnologie, Leipzig, Germany
  15. Mingo, S., Jimenez, J., Alonso, M. and Hombrados, C. (2001), 'Bond of CFRP strips on damaged masonry structures', Proc. of the Int. Conf. Composites in Construction, Porto, 10-12 October.
  16. Paulay, T. and Priestley, M. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley & Sons, Inc.
  17. Priestley, M. and Seible, F. (1995), 'Design of seismic retrofit measures for concrete and masonry structures', Construction and Building Materials, 6, 365-377
  18. RILEM (1994a), Technical Recommendations for the Testing and Use of Construction Materials, LUMB1-'Compressive strength of small walls and prisms', E & FN Spon, London, UK.
  19. RILEM (1994b), Technical Recommendations for the Testing and Use of Construction Materials, LUMB5-'Short-term shear test for the interface between the masonry unit and mortar or moisture-insulating interlayer', E & FN Spon, London, UK.
  20. RILEM (1994c), Technical Recommendations for the Testing and Use of Construction Materials, LUMB6-'Diagonal tensile strength tests of small wall specimens', E & FN Spon, London, UK.
  21. Triantafillou, T. (1998), 'Strengthening masonry structures using epoxy bonded FRP laminates', J. Compos. Constr., 2(9), 96-104 https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96)
  22. Triantafillou, T. (2001), 'Seismic retrofitting of structures with fibre-reinforced polymers', Prog. Struct. Engng. Mater, (3), 57-65
  23. Valluzzi, M., Tinazzi, C. and Modena, C. (2002), 'Shear behaviour of masonry panels strengthened by FRP laminates', Construction and Building Materials, 16,409-416 https://doi.org/10.1016/S0950-0618(02)00043-0

Cited by

  1. Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels vol.74, pp.3, 2006, https://doi.org/10.1016/j.compstruct.2005.04.012
  2. Shear behavior of masonry panels strengthened by high strength steel cords vol.25, pp.2, 2011, https://doi.org/10.1016/j.conbuildmat.2010.05.014
  3. Shear behavior of unreinforced and reinforced masonry panels subjected to in situ diagonal compression tests vol.25, pp.12, 2011, https://doi.org/10.1016/j.conbuildmat.2011.01.009
  4. Homogenization methods for interface modeling in damaged masonry vol.46, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2010.09.009
  5. Numerical Investigation on the Influence of FRP Retrofit Layout and Geometry on the In-Plane Behavior of Masonry Walls vol.16, pp.6, 2012, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000297
  6. Contribution to the modelling of interfaces in masonry construction vol.23, pp.6, 2009, https://doi.org/10.1016/j.conbuildmat.2008.10.011
  7. Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry vol.47, pp.22-23, 2010, https://doi.org/10.1016/j.ijsolstr.2010.06.024
  8. Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests vol.10, pp.11, 2005, https://doi.org/10.3390/buildings10110196