References
- Akoz, A.Y and Uzcan, N. (1992), 'The new functional for Reissner plates and its application', Comput. Struet., 44(5), 1139-1144 https://doi.org/10.1016/0045-7949(92)90334-V
- Akoz, A.Y and Erath, N. (2000), 'A sectorial element based on Reissner plate theory', Struet. Eng. Meeh., 9(6), 519-540
- ANSYS (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4. USA
- Ayad, R, Rigolot, A and TaIbi, N. (2001), 'An improved three-node hybrid-mixed element for MindlinlReissner plates', Int. J. Hum. Meth. Eng., 51(8), 919-942 https://doi.org/10.1002/nme.188
- Ayad, R. and Rigolot, A (2002), 'An improved four-node hybrid-mixed element based upon Mindlin's plate theory', Int. J. Hum. Meth. Eng., 55, 705-731 https://doi.org/10.1002/nme.528
- Bathe, K.J. and Dvorkin, E.H. (1985), 'A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation', Int. J. Hum. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
- Bathe, K.J., Brezzi, F. and Cho, S.W (1989), 'The MITC7 and MITC9 plate bending elements', Comput. Struet., 32(3-4), 797-814 https://doi.org/10.1016/0045-7949(89)90365-9
- Batoz, J.L. and Tahar, M.B. (1982), 'Evaluation of a new quadrilateral thin plate bending element', Int. J. Num. Meth. Eng., 18,1655-1677 https://doi.org/10.1002/nme.1620181106
- Bergan, P.G. and Wang, X. (1984), 'Quadrilateral plate bending elements with shear deformations', Comput. Struet., 19(1-2),25-34 https://doi.org/10.1016/0045-7949(84)90197-4
- Bhashyam, G.R and Gallagher, R.H. (1983), 'A triangular shear flexible finite element for moderately thick laminated composite plates', Comp. Methods Appl. Meeh. Eng., 40, 309-326 https://doi.org/10.1016/0045-7825(83)90104-4
- Brezzi, F. and Marini, L.D. (2003), 'A nonconforming element for the Reissner-Mindlin plate', Comput. Struet., 81(8-11), 515-522 https://doi.org/10.1016/S0045-7949(02)00418-2
- Choi, C.K. and Park, Y.M. (1999), 'Quadratic NMS Mindlin-Plate-Bending Element', Int. J. Hum. Meth. Eng., 46, 1273-1289 https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
- Cheung, Y.K. and Wanji, C. (1989), 'Hybrid quadrilateral element based on Mindlin-Reissner plate theory', Comput. Struet., 32(2), 327-339 https://doi.org/10.1016/0045-7949(89)90044-8
- Dong, Y.F., Wu, C.C. and Defreitas, J.A.T. (1993), 'The hybrid stress model for Mindlin-Reissner plates based on a stress optimization condition', Comput. Struet., 46(5), 877-897 https://doi.org/10.1016/0045-7949(93)90150-C
- Erath, N. and Akoz, A.Y. (2002), 'Free vibration analysis of Reissner plates by mixed finite element', Struet. Eng. Meeh., 13(3), 277-298
- Feng, W, Hoa, S.V and Huang, Q. (1997), 'Classification of stress modes in assumed stress elds of hybrid finite elements', Int. J. Hum. Meth. Eng., 40, 4313-4339 https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
- Hughes, T.J.R, Cohen, M. and Haroun, M. (1978), 'Reduced and selective integration techniques in finite element analysis of plates', Nue. Eng. Des., 46, 203-222 https://doi.org/10.1016/0029-5493(78)90184-X
- Hughes, T.J.R and Tezduyar, T.E. (1981), 'Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element', J. Appl. Mech., 46, 587-596
- Ibrahimbegovic, A (1993), 'Quadrilateral finite elements for analysis of thick and thin plates', Comput. Meth. Appl. Mech. Eng., 110, 195-209 https://doi.org/10.1016/0045-7825(93)90160-Y
- Lee, S.W and Pian, T.H.H. (1978), 'Improvement of plate and shell finite-elements by mixed formulations', AIAA J., 16(1),29-34 https://doi.org/10.2514/3.60853
- Leissa, A.W (1973), 'The free vibration of rectangular plates', J. Sound Vib., 31, 257-293 https://doi.org/10.1016/S0022-460X(73)80371-2
- Malkus, D.S. and Hughes, T.J.R (1978), 'Mixed finite element methods-reduced and selective integration techniques: a unification of concepts', Comput. Meth. Appl. Mech. Eng., 15,63-81 https://doi.org/10.1016/0045-7825(78)90005-1
- Mindlin, R.D. (1951), 'Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates', J. Appl. Mech., ASME, 18, 31-38
- Morley, L.S.D. (1963), Skew Plates and Stnlctures, Series of Monographs in Aeronautics and Astronautics, MacMillan, New York
- Omurtag, M.H., Ozutok, A and Akoz, A.Y (1997), 'Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed fmite element formulation based on Gateaux differential', Int. J. Num. Meth. Eng., 40(2), 295-317 https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
- Pian, T.H.H. and Chen, D.P (1983), 'On the suppression of zero energy deformation modes'. Int. J. Num. Meth. Eng., 19, 1741-1752 https://doi.org/10.1002/nme.1620191202
- Pryor, C.W., Jr., Barker, R.M. and Frederick, D. (1970), 'Finite element bending analysis of Reissner plate', J. Eng. Mech. Div. ASCE, 96, 967-983
- Punch, E.F. and Aduri, S.N. (1984), 'Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements', Comput. Meth. Appl. Mech. Eng., 47, 331-356 https://doi.org/10.1016/0045-7825(84)90083-5
- Rao, G.V, Venkataramana, J. and Raju, I.S. (1974), 'A high precision triangular plate bending element for the analysis of thick plates', Nuc. Eng. Des., 30, 408-412 https://doi.org/10.1016/0029-5493(74)90225-8
- Reissner, E. (1945), 'The effect of transverse shear deformation on the bending of plates', J. Appl. Mech., ASME, 12, A69-A77
- Sydenstricker, R.M. and Landau, L. (2000), 'A study of some triangular discrete Reissner-Mindlin plate and shell elements', Comput. Struct., 78(1-3), 21-33 https://doi.org/10.1016/S0045-7949(00)00103-6
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells (2nd edn). McGraw-Hill: New York
- Wang, Y.L., Wang, X.W. and Zhou, Y (2004), 'Static and free vibration analyses of rectangular plates by the new version of the differential quadrature element method', Int. J. Num. Meth. Eng., 59(9), 1207-1226 https://doi.org/10.1002/nme.913
- Wanji, C and Cheung, Y.K (2000), 'Refined quadrilateral element based on Mindlin/Reissner plate theory', Int. J. Num. Meth. Eng., 47(1-3), 605-627 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<1::AID-NME810>3.0.CO;2-Q
- Wanji, C and Cheung, Y.K (2001), 'Refined 9-dof triangular Mindlin plate elements', Int. J. Num. Meth. Eng., 51, 1259-1281 https://doi.org/10.1002/nme.196
- Woo, K.S., Hong, C.H., Basu, P.K and Seo, C.G. (2003), 'Free vibration of skew Mindlin plates by p-version of F.E.M.', J. Sound Vib., 268, 637-656 https://doi.org/10.1016/S0022-460X(02)01536-5
- Xu, Z., Zienkiewicz, O.C and Zeng, L.F. (1994), 'Linked interpolation for Reissner-Mindlin plate elements: Part III- An alternative quadrilateral', Int. J. Num. Meth. Eng., 37,1437-1443 https://doi.org/10.1002/nme.1620370902
- Yuan, F. and R. Miller E. (1989), 'A cubic triangular finite element for flat plates with shear', Int. J. Num. Meth. Eng., 28, 109-126 https://doi.org/10.1002/nme.1620280109
- Zengjie, G. and Wanji, C. (2003), 'Refined triangular discrete Mindlin flat shell elements', Comput. Mech., 33(1),52-60 https://doi.org/10.1007/s00466-003-0499-z
- Zienkiewicz, O.C (1971), The Finite Element Method in Engineering Science, McGraw-Hill
- Zienkiewicz, O.C, Taylor, R.L. and Too, J.M. (1971), 'Reduced integration technique in geneal analysis of plates and shells', Int. J. Num. Meth. Eng., 3, 275-290 https://doi.org/10.1002/nme.1620030211
- Zienkiewicz, O.C, Xu, Z., Zeng, L.F., Samuelsson, A and Wiberg, N.E. (1993), 'Linked interpolation for Reissner-Mindlin plate elements: Part I- A simple Quadrilateral', Int. J. Num. Meth. Eng., 36, 3043-3056 https://doi.org/10.1002/nme.1620361802
Cited by
- An 8-node assumed stress hybrid element for analysis of shells vol.84, pp.29-30, 2006, https://doi.org/10.1016/j.compstruc.2006.08.003
- New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method vol.33, pp.4, 2009, https://doi.org/10.12989/sem.2009.33.4.485
- Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior vol.12, pp.4, 2012, https://doi.org/10.12989/scs.2012.12.4.275
- An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.573
- Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach 2017, https://doi.org/10.1007/s00707-017-2067-1
- Development of the large increment method in analysis for thin and moderately thick plates vol.19, pp.3, 2014, https://doi.org/10.1007/s12204-014-1498-2
- Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach vol.7, pp.3, 2007, https://doi.org/10.12989/scs.2007.7.3.241
- An assumed-stress hybrid element for static and free vibration analysis of folded plates vol.25, pp.4, 2005, https://doi.org/10.12989/sem.2007.25.4.405
- A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints vol.26, pp.6, 2005, https://doi.org/10.12989/sem.2007.26.6.725
- New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method vol.36, pp.5, 2005, https://doi.org/10.12989/sem.2010.36.5.625
- Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates vol.11, pp.5, 2005, https://doi.org/10.12989/scs.2011.11.5.359
- New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM vol.41, pp.2, 2005, https://doi.org/10.12989/sem.2012.41.2.205
- Static and free vibration behaviour of orthotropic elliptic paraboloid shells vol.23, pp.6, 2005, https://doi.org/10.12989/scs.2017.23.6.737
- Analysis of plane frame structure using base force element method vol.62, pp.1, 2017, https://doi.org/10.12989/sem.2017.62.1.011
- Dynamic behaviour of orthotropic elliptic paraboloid shells with openings vol.63, pp.2, 2005, https://doi.org/10.12989/sem.2017.63.2.225