DOI QR코드

DOI QR Code

Buckling lengths of unbraced multi-storey frame columns

  • Ozmen, Gunay (Faculty of Civil Engineering, Istanbul Technical University) ;
  • Girgin, Konuralp (Faculty of Civil Engineering, Istanbul Technical University)
  • Received : 2004.02.26
  • Accepted : 2004.08.11
  • Published : 2005.01.10

Abstract

In several design codes and specifications, simplified formulae and diagrams are given for determining the buckling lengths of frame columns. It is shown that these formulae may yield rather erroneous results in certain cases. This is due to the fact that, the code formulae utilise only local stiffness distributions. In this paper, a simplified procedure for determining approximate values for the buckling loads of multi-storey frames is developed. The procedure utilises lateral load analysis of frames and yields errors in the order of 10%, which may be considered suitable for design purposes. The proposed procedure is applied to several numerical examples and it is shown that all the errors are in the acceptable range and on the safe side.

Keywords

References

  1. ACI 318-89, (1989), 'Building code requirements for reinforced concrete with design applications', Portland Cement Association, Skokie, Illinois
  2. AISC (1988), 'Specification for structural steel buildings', American Institute of Steel Construction, Chicago, Illinois
  3. AISC (1999), 'Load and resistance factor design specification for structural steel buildings', American Institute of Steel Construction, Chicago, Illinois
  4. Aristizabal-Ochoa, J.D. (1997), 'Braced, partially braced and unbraced frames: Classical approach', J. Struct. Engrg., ASCE, 123(6), 799-807 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(799)
  5. Aristizabal-Ochoa, J.D. (2002), 'Classic buckling of three-dimensional multi-column systems under gravity loads', J. Engrg. Mechs., ASCE, 128(6),613-624 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:6(613)
  6. Aristizabal-Ochoa, J.D. (2003), 'Elastic stability and second-order analysis of three-dimensional frames: Effects of column orientation', J. Engrg. Mechs., ASCE, 129(11), 1254-1267 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:11(1254)
  7. Bridge, R.Q. and Fraser, D.J. (1987), 'Improved G-factor method for evaluating effective lengths of columns', J. Struct. Engrg., ASCE, 113(6), 1341-1356 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1341)
  8. Cakiroglu, A. (1977), Buckling Analysis of Framed Structures, (In Turkish), Matbaa Teknisyenleri Press, Istanbul
  9. Cheong-Siat-Moy, F. (1999), 'An improved K-factor formula', J. Struct. Engrg., ASCE, 125(2), 169-174 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:2(169)
  10. DIN 18800, (1990), Part 2: 'Analysis of safety against buckling of linear members and frames', Beuth Verlag GmbH, Berlin
  11. Duan, L. and Chen, W.F. (1988), 'Effective length factors for columns in braced frames', J. Struct. Engrg., ASCE, 114(10), 2357-2370 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:10(2357)
  12. Duan, L. and Chen, W.F. (1989), 'Effective length factors for columns in unbraced frames', J. Struct. Engrg., ASCE, 115(1), 149-165 https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(149)
  13. Eurocode 3, (2002), Design of Steel Structures, Final Draft, CEN, Brussels, Belgium. Galambos, T.y. (1968), Structural Members and Frames, Prentice-Hall, Inc., New York
  14. Galambos, T.V (1968), Structural Members and Frames, Prentice-Hall, Inc., New York
  15. Girgin, K. (1996), 'A method of load increments for determining the second-order limit load and collapse safety', (Dissertation thesis in Turkish), Istanbul Technical University, Istanbul
  16. Hellesland, J. and Bjorhovde, R. (1996), 'Restraint demand factors and effective lengths of braced columns', J. Struct. Engrg., ASCE, 122(10), 1216-1224 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1216)
  17. Hellesland, J. and Bjorhovde, R. (1997), 'Improved frame stability analysis with effective lengths', J. Struct. Engrg., ASCE, 122(11),1275-1283 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1275)
  18. Horne, M.R. and Merchant, W. (1965), The Stability of Frames, Pergamon Press, London
  19. LeMessurier, W.J. (1977), 'A practical method of second-order analysis, 2:Rigid frames', Engrg. J., AISC, 14(2), 49-67
  20. Lui, E.M. (1992), 'A novel approach for K factor determination', Engrg. J., AISC, 29(4),150-159
  21. Muto, K. (1974), A Seismic Design Analysis of Buildings, Maruzen Co. Ltd., Tokyo
  22. Neal, B.G. (1964), Structural Theorems and Their Applications, Pergamon Press, London
  23. Schneider, K.J. (1996), Bautabellen fiir Ingenieure, 12. Auflage, Werner Verlag, Dusseldorf
  24. White, D.W. and Hajjar, J.F. (1997), 'Buckling models and stability design of steel frames: A unified approach', J. Construct. Steel Res., 42(3), 171-207 https://doi.org/10.1016/S0143-974X(97)00014-X
  25. Yura, J.A. (1971), 'Effective length of columns in unbraced frames', Engrg. J., AISC, 8(2), 37-42

Cited by

  1. Iterative system buckling analysis, considering a fictitious axial force to determine effective length factors for multi-story frames vol.31, pp.2, 2009, https://doi.org/10.1016/j.engstruct.2008.10.008
  2. Static and dynamic stability of cracked multi-storey steel frames vol.58, pp.1, 2016, https://doi.org/10.12989/sem.2016.58.1.103
  3. Uncertainty modelling of critical column buckling for reinforced concrete buildings vol.36, pp.2, 2011, https://doi.org/10.1007/s12046-011-0013-9
  4. Lateral stability analysis of multistory buildings using the differential transform method vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.861
  5. Effective lengths of braced frame columns vol.28, pp.2, 2008, https://doi.org/10.12989/sem.2008.28.2.189
  6. System buckling analysis for multi-story frames subjected to nonconservative forces vol.15, pp.2, 2015, https://doi.org/10.1007/s13296-015-6003-8
  7. Effective buckling length of steel column members based on elastic/inelastic system buckling analyses vol.26, pp.6, 2005, https://doi.org/10.12989/sem.2007.26.6.651