$H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사

Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas

  • 강석현 (한국과학기술 연구원 청정기술연구센터) ;
  • 정병만 (한국과학기술 연구원 청정기술연구센터) ;
  • 최현우 (한국과학기술 연구원 청정기술연구센터) ;
  • 김성현 (고려대학교 화공생명공학과) ;
  • 이병권 (한국과학기술 연구원 청정기술연구센터) ;
  • 최대기 (한국과학기술 연구원 청정기술연구센터)
  • Kang, Seok-Hyun (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Jeong, Byung-Man (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Hyun-Woo (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Byung-Kwon (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Dae-Ki (Environment & Process Technology Division, Korea Institute of Science and Technology)
  • 발행 : 2005.06.15

초록

The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

키워드

참고문헌

  1. D. Kunii and J. M. Smith : 'Heat Transfer Characteristics of Porous Rocks', AICHE J., Vol. 6, No.1, 1960, pp. 71-78. https://doi.org/10.1002/aic.690060115
  2. 조정호 : '범용성 화학공정 모사기의 효과적인 이용 및 국내 정유 및 석유화학공정의 에너지 절감 방안', NICE, Vol. 18, No. 6, 2000, pp. 753-761
  3. 'Aspen Adsim Adsorption Reference Guide', Aspen Technology Inc., Cambridge, 2003
  4. R. T. Yang: 'Gas Separation by Adsorption Processes', Sutterworth, Boston, 1987
  5. S. J. Doong and R. T. Yang : 'Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption : Pore/Surface Diffusion and Equilibrium Models', AICHE J., Vol. 32, 1986, pp. 397-410 https://doi.org/10.1002/aic.690320306
  6. D. M. Ruthven, S. Farooq and K. S. Knaebel, : 'Pressure Swing Adsorption', VCH publishers, New York, 1994.
  7. J. Y. Yang, S. S. Han, C. H. Cho and H. J. Lee : 'Numerical Simulation of Adsorption Bed and Bed Dynamics for $H_2$/CO Gas Mixture', HWAHAK KONGHAK, Vol. 33, 1995, pp. 56-68
  8. D. M. Ruthven : 'Principles of Adsorption and Adsorption Processes', John Wiley & Sons, New York, 1984
  9. J. E. Mitchell and L. H. Shendalman : 'A Study of Heatless Adsorption in the Model System $CO_2$ in He II', AICHE Symp. Ser., Vol. 69, 1973, pp. 25-32
  10. K. Chihara and M. Suzuki : 'Simulation of Nonisothermal Pressure Swing Adsorption', J. Chem. Eng. Jpn., Vol. 16, 1983, pp. 53-61 https://doi.org/10.1252/jcej.16.53
  11. E. Glueckauf : 'Theory of Chromatography, Part 10. Formular for Diffusion into Sphere and Their Application to Chromatography', Trans. Faraday Soc., Vol. 51, 1955, pp. 1540-1551 https://doi.org/10.1039/tf9555101540
  12. A. Malek and S. J. Farooq : 'Determination of Equilibrium Isotherms Using Dynamic Column Breakthrough and Constant Flow Equilibrium Desorption', Chem. Eng. Data., Vol. 41, 1996, pp. 25-32 https://doi.org/10.1021/je950178e
  13. 'Aspen custom modeler: Modeling Language Reference Guide ', Aspen Technology Inc., Cambridge, 2003
  14. S. S. Suh and Y. S. Hwang : 'Pressure Swing Adsorption for Air Separation : Comparison of Different Isothermal Processes', HWAHAK KONGHAK, Vol. 36, 1998, pp. 305-313
  15. C. W. Skarstrom : 'Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption', U. S. Patent No. 2,944,627, 1960
  16. W. D. Marsh, R. C. Hoke, F. S. Pramuk and C. W. Skarstrom : 'Pressure Equalization Depressuring in Heatless Adsorption', U. S. Patent No. 3,142,547, 1964
  17. S. U. Rege and R. T. Yang : 'Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon', Adsorption, Vol. 6, 2000, pp. 15-22 https://doi.org/10.1023/A:1008938930368
  18. G. W. Miller, K. S. Knaebel and K. G. Ikels : 'Equilibria of Nitrogen, Oxygen, Argon, and Air in Molecular Sieve 5A', AICHE J., Vol. 33, 1987, pp. 194-201 https://doi.org/10.1002/aic.690330204
  19. S. Hayashi, M. Kawai and T. Kaneko : 'Dynamics of high purity oxygon PSA', Gas. Sep. Purif., Vol. 10, 1996, pp. 19-23 https://doi.org/10.1016/0950-4214(95)00022-4
  20. R. T. Yang and S. J. Doong : 'Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation', AICHE J., Vol. 31, 1985, pp. 1829-1985 https://doi.org/10.1002/aic.690311109
  21. J. G. Jee, S. J. Lee, H. M. Moon, S. H. Lee and C. H. Lee : 'Development of $O_2$ Purifier by Pressure Swing Adsorption Process', KIGAS, Vol. 8, 2004, pp. 37-47
  22. H. E. Howard, D. P. Bonaquist and W. M. Canney : 'Process For Maximizing the Recovery of Argon from an Air Separation System at High Argon Recovery Rates', U. S. Patent No. 5,448,893, 1995
  23. S. J. Doong and R. T. Yang : 'Hydrogen Purification by the Multibed Pressure Swing Adsorption Process', Reactive Polymers, Vol. 6, 1987, pp. 7-13
  24. J. Y. Yang, S. S. Han, C. H. Cho, C. H. Lee and H. J. Lee : 'Bulk Separation of Hydrogen Mixture by a One-Column PSA Process, Separations Technology', Vol. 5, 1995, pp. 239-249 https://doi.org/10.1016/0956-9618(95)00128-X