PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis

  • 이혁재 (명지대학교 화학공학과) ;
  • 정윤교 (명지대학교 화학공학과) ;
  • 장인영 (명지대학교 화학공학과) ;
  • 황갑진 (한국에너지기술연구원 수소에너지연구센터) ;
  • 배기광 (한국에너지기술연구원 수소에너지연구센터) ;
  • 심규성 (한국에너지기술연구원 수소에너지연구센터) ;
  • 강안수 (명지대학교 화학공학과)
  • Lee, Hyuck-Jae (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Jung, Yun-Kyo (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Jang, In-Young (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Sim, Kyu-Sung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, An-Soo (Dep. of Chemical Engineering, Myongji Univ.)
  • 발행 : 2005.03.15

초록

Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

키워드

참고문헌

  1. NEDO-WE-NET, 平成 7年度 成果報告書, 1995
  2. J. Cruickshank and K. Scott : 'The degree and effect of methanol crossover in the direct methanol fuel cell', J. power Sources, Vol. 70, 1998, P. 40 https://doi.org/10.1016/S0378-7753(97)02626-8
  3. J. M. Bae and I. Honma : 'Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells', Solid state Ionics, Vol. 147, 2002, P. 189 https://doi.org/10.1016/S0167-2738(02)00011-5
  4. H. B. Park and Y. M. Lee : 'Polymer Electrolyte Membranes for Fuel Cell', J. Korean Ind. Eng. Chem., Vol. 13, No.1, 2002
  5. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang and S. Kaliaguine 'Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes', J. memb. Sci, Vol. 229, 2004, pp. 95-106 https://doi.org/10.1016/j.memsci.2003.09.019
  6. C. Manea and M. Mulder : 'Characterization of polymer blends of polyether ether sulfone/sulfonated polysulfone and polyethersulfone/ sulfonated polyether etherketone for direct methanol fuel cell applications', J. memb. Sci, Vol 206, 2002 pp. 443-453 https://doi.org/10.1016/S0376-7388(01)00787-6
  7. J. Kerres , A. Ullrich, F. Meier and T. Haring, 'Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells', Solid State lonics, Vol 125, 1999, pp. 243-249 https://doi.org/10.1016/S0167-2738(99)00181-2
  8. K. D. Kreuer : 'On the development of proton conducting materials for technical applications', Solid State Ionics, Vol. 97, No. 1, 1997
  9. W. Cui, J. Kerres and G. Eigenberger : 'Development and characterization of ion exchange polymer blend membranes', Sep. Pur. Tech., Vol. 14, 1998, P.145 https://doi.org/10.1016/S1383-5866(98)00069-0
  10. H. S. Cheon, M. Oh and S. U. Hong : 'Preparation and Their Characterization of Blend Polymer Elctrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone)', Memb. J., Vol. 13, No.1, 2003
  11. A. E. Rodrigues : 'Ion exchange Science and Technology', Dordrecht, Martinus Nijhoff Pub., 1986
  12. D. S. Flett : 'Ion Exchange Membranes', Ellis Horwood, London, 1983
  13. O. Savadogo : 'Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell(PEFC) applications', J. Power Sources, Vol. 127, 2004, P 135-161 https://doi.org/10.1016/j.jpowsour.2003.09.043
  14. S. D. Mikhailenko, S. M. J. Zaidi and S. Kaliaguine : 'Sulfonated polyether ether ketone based composite polymer electrolyte membranes', Catalysis Today, Vol. 67, 2001, pp. 225-236 https://doi.org/10.1016/S0920-5861(01)00290-5
  15. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski and J. E. McGrath : 'Fabrication and characterization of heteropolyacid/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Memb. Sci., Vol. 212, 2003, pp. 263-282 https://doi.org/10.1016/S0376-7388(02)00507-0
  16. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson and M. D. Guiver : 'Proton conducting composite membrane from Fabrication and characterization of polyether ether ketone and hetero- polyacids for fuel cell applications', J. Memb. Sci., Vol. 173, 2000, pp.17-34 https://doi.org/10.1016/S0376-7388(00)00345-8
  17. S. I. Jung, C. H. Ryo, A. S. Kang and H. S. Lee : 'Manufacture and CurrentIV oltage Characteristics of Bipolar Membrane with Polysulfone', J. Korea. Ind. Eng. Chem. Vol.14, No.1, 2003, pp. 95-102