Comparison of hydrogenases prepared from Clostridium butyricum and Thiocapsa roseopersicina

Clostridium butyricum [절대혐기발효세균]과 Thiocapsa roseopersicina [홍색유황세균]의 수소생산 효소 특성 비교

  • Baek, Jin-Sook (Biomass research center, Korea Institute of Energy Research) ;
  • Yun, Young-Su (Biomass research center, Korea Institute of Energy Research) ;
  • Kim, Mi-Sun (Biomass research center, Korea Institute of Energy Research)
  • 백진숙 (한국에너지기술연구원 바이오매스연구센터) ;
  • 윤영수 (한국에너지기술연구원 바이오매스연구센터) ;
  • 김미선 (한국에너지기술연구원 바이오매스연구센터)
  • Published : 2005.09.15

Abstract

Fermentative strict anaerobic bacterium, Clostricium butyricum NCIB 9576 (Cl. butyricum) and purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 (T. roseopersicina) were compared on their temperature and oxygen stabilities of cytoplasmic hydrogenases. Cell growth phase and the specific activities of evolution $H_2ase$ were related for both strains, exhibiting the highest cytoplasmic $H_2ase$ activities during the logarithmic growth phases which were 4 and 18 hrs after the incubation for Cl. butyricum and T. roseopersicina, respectively. The optimum temperatures for the growth of Cl. butyricum and T. roseopersicina were 37$^{\circ}C$ and 27$^{\circ}C$, respectively, while those for $H_2$ evolution of cytoplsmic hydrogenases prepared from Cl. butyricum ($C-H_2ase$) and T. roseopersicina ($T-H_2ase$) were 45$^{\circ}C$ and 65$^{\circ}C$, respectively. $T-H_2ase$ was more thermo-stable than $C-H_2ase$. $T-H_2ase$ retained its full activity for 5 hrs at 50$^{\circ}C$ and retained 90% of its original activity for 5 hrs at 60$^{\circ}C$, however, $C-H_2ase$ lost its activity drastically at 50$^{\circ}C$. The optimum pHs for $H_2$ oxidation of $C-H_2ase$ and $T-H_2ase$ were 9.0 and 7.5 respectively. The both enzymes showed maximum $H_2$ evolution activity at pH 7.0. Under the aerobic condition, 80% of $T-H_2ase$ activity was retained for 10 hrs at 30$^{\circ}C$, and 50% of activity was still remained after 6 days at the same experimental conditions. But the $C-H_2ase$ was labile to oxygen and lost its activity immediately after the exposure to air.

Keywords

References

  1. Albracht, S.P. Biochem. Biophys. Acta. Vol.1188, 1994, pp.167-204 https://doi.org/10.1016/0005-2728(94)90036-1
  2. Adams, M.W., E.I. Stiefel. Curr. Opin. Chem. Biol. vol. 42000, pp. 214-220 https://doi.org/10.1016/S1367-5931(99)00077-0
  3. Adams, M.W. Biochim. Biophys. Acta. Vol. 1020, 1990, pp.115-145 https://doi.org/10.1016/0005-2728(90)90044-5
  4. Zorin, N.A. 1986. Biochime., Vol. 68, 1986, pp.97-101 https://doi.org/10.1016/S0300-9084(86)81074-4
  5. Vignais, P.M. and B. Arch. Microbiol. Vol. 161, pp.1-10
  6. Adams, M.W., E. Eccleston, and J.B. Howard. Biochem. Vol. 86, 1989, pp. 4932-4936
  7. Gorwa, M., C. Craux, and P. Soucaille. J. Bacteriol. Vol.178, No.9, 1996, pp.2668-2675 https://doi.org/10.1128/jb.178.9.2668-2675.1996
  8. Vignais, P.M. and A. Colbeau. Curr. Issues Mol. Biol. Vol.6, 2004, pp.159-188
  9. Mertens, R. and A. Liese. 2004. Curr. Opin. Biotechnol. Vol.15, 2004, pp.343-348 https://doi.org/10.1016/j.copbio.2004.06.010
  10. Molongoski, J.J. and M.J. Klug. Appl. Environ. Microbiol., Vol.31, 1976, pp. 83-90
  11. Pfennig, N., H.G. Truper. 1991. The family Chromatiaceae, pp. 3200-3221. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer (ed.), The prokaryotes, Springer, Berlin
  12. Rakhely, G., A.T. Kovacs, G. Maroti, B.D. Fodor, G. Csanadi, D. Latinovics, and K.L. Kovacs. Appl. Environ. Microbiol. Vol.70, No.2, 2004, pp. 722-728 https://doi.org/10.1128/AEM.70.2.722-728.2004
  13. Bryant, F.O. and M.W. Adams. 1989. J. Biol. Chem. Vol.264, 1989, pp. 5070 -5079
  14. Cammack, R., V.M. Fernandez, and E. C. Hatchikian. Methods in Enzymology. Vol.243, 1994, pp. 43-69 https://doi.org/10.1016/0076-6879(94)43007-1
  15. Jones, D.T. and D.R. Woods. Microbiol. Rev. Vol.50, 1986, pp.484-524
  16. Kovacs, K. L., B. Fodor, A.T. Kovacs, G. Csanadi, G. Maroti, J. Balogh, S. Arvani, and G. Rakhely. Int. J. Hydrogen Energy. Vol.27, 2002, pp. 1463-1469 https://doi.org/10.1016/S0360-3199(02)00097-6
  17. Nishihara, H., Y. Miyashita, K. Aoyama, T. Kodama, Y. Igarachi, and Y. Takamura.Biochem. Biophys. res. commun. Vol.232, 1997, pp. 766-770 https://doi.org/10.1006/bbrc.1997.6369
  18. Fernandez, V.M., Rao. K.K., Fernandez. M.A. and Cammack, R. Biochimie. Vol.68, 1986, pp. 43-48 https://doi.org/10.1016/S0300-9084(86)81066-5
  19. Cammack, R., Fernandez, V.M., and Schneider. K. Biochimie. Vol.68 1986, pp. 85-91 https://doi.org/10.1016/S0300-9084(86)81072-0
  20. Pihl, T.D., R.N. Schicho, R.M. Kelly, and R.J. Maier. Proc. Natl. Acad. Sci. USA. Vol.86, 1989, pp. 138-141 https://doi.org/10.1073/pnas.86.1.138
  21. Pihl, T.D. and R.J. Maier. J. Bacteriol. Vol.173, 1991, pp. 1839-1844 https://doi.org/10.1128/jb.173.6.1839-1844.1991