Screening of Korean Medicinal Herbs for Hormonal Activities using Recombinant Yeast Assay and MCF-7 Human Breast Cancer Cells

재조합효모와 MCF -7 사람유방암세포주를 이용한 한국산 약용식물의 호르몬 활성 스크리닝

  • Yang Se-Ran (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Hong Hee-Do (Korea Food Research institute, Sungnam city) ;
  • Cho Sung-Dae (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Ahn Nam-Shik (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Jung Ji-Won (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Park Joon-Suk (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Jo Eun-Hye (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Hwang Jae-Woong (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Sun bo (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Park Jung-Ran (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Lee Seong-Hun (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Jung Ji-Youn (Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Choi Changsun (Department of Veterinary Pathology, College of Veterinary Medicine, Ohio State University, USA)
  • 양세란 (서울대학교 수의과대학) ;
  • 홍희도 (한국식품개발연구원) ;
  • 조성대 (서울대학교 수의과대학) ;
  • 안남식 (서울대학교 수의과대학) ;
  • 정지원 (서울대학교 수의과대학) ;
  • 박준석 (서울대학교 수의과대학) ;
  • 조은혜 (서울대학교 수의과대학) ;
  • 황재웅 (서울대학교 수의과대학) ;
  • 순보 (서울대학교 수의과대학) ;
  • 박정란 (서울대학교 수의과대학) ;
  • 이성훈 (서울대학교 수의과대학) ;
  • 정지윤 (서울대학교 수의과대학) ;
  • 최창순 (오하이오 주립대학 수의과대학 병리학교실)
  • Published : 2005.03.01

Abstract

To investigate whether there are estrogenic and anti-estrogenic activities in various medicinal herbs and discover prominent chemo-preventive agents, we screened and compared the ethanol extracts of 9 plants through the recombinant yeast assay and MCF-7 human breast cancer cell assay, In recombinant yeast assay, seven medicinal herbs showed estrogenicity, and four extracts showed androgenecity. In MCF-7 proliferation assay, the growth of MCF-7 cells was inhibited by eight extracts before and even after co-treatment with bisphenol A. It is interesting that the extracts of Glycyrrhiza uralensis, Cassia tora, Syringa velutina, Zingiber officinale, Malva verticillata, and Panax ginseng C.A. Meyer exhibited inhibitory effects as phytoestrogens in estrogen-responsive human breast cancer cells. This study suggests that some Korean medicinal herbs might be considered as phytoestrogens and be useful to further analyze those plants which contain the estrogenic effect in order to identify the active principles.

약용식물내 에스트로겐성과 항-에스트로겐성을 조사하고 항암인자를 발견하기 위하여, 본 연구는 에탄올추출로 제조된 9종류의 한국산 약용식물에 대하여 재조합효모와 MCF-7 사람유방암세포주를 이용하여 스크리닝하고 비교하였다. 재조합효모를 이용한 실험결과, 7종류의 약용식물에서 에스트로겐성이 나타났고, 4종류에서 안드로겐성이 나타났다. 또한 MCF-7 사람유방암세포주를 이용한 실험결과, 8종류의 추출물이 MCF-7 세포의 성장을 억제하는 것으로 확인되었으며 비스페놀 A와 동시 처치한 경우에도 유의적으로 억제하는 것으로 나타났다. 또한 Glycyrrhiza uralensis, Cassia tora, Syringa velutina, Zingiber officinale, Malva verticillata, Panax ginseng C.A. Meyer는 식물성 에스트로겐으로서 에스트로겐에 양성인 사람유방암세포의 증식을 유의적으로 억제시키는 흥미로운 결과가 제시되었다. 따라서 이번 연구는 한국산 약용식물이 식물성 에스트로겐과 항암인자로서 이용될 수 있으며, 에스트로겐의 활성을 조사하는데 유용하게 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Hayakawa, J., Noda, N., Yamada, S. & Uno, K. [Studies on physical and chemical quality evaluation of crude drug preparations. I. Analysis of Pueraria Radix and species Puerariae]. Yakugaku Zasshi 104, 50-6 (1984)
  2. Setchell, K. D. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68, 1333S-1346S (1998)
  3. Lephart, E. D., Thompson, J. M., Setchell, K. D., Adlercreutz, H. & Weber, K. S. Phytoestrogens decrease brain calcium-binding proteins but do not alter hypothalamic androgen metabolizing enzymes in adult male rats. Brain Res 859, 123-31 (2000) https://doi.org/10.1016/S0006-8993(00)01968-5
  4. Murkies, A. L., Wilcox, G. & Davis, S. R. Clinical review 92: Phytoestrogens. J Clin Endocrinol Metab 83, 297-303 (1998) https://doi.org/10.1210/jc.83.2.297
  5. Ekbom, A. & Akre, O. Increasing incidence of testicular cancer--birth cohort effects. Apmis 106, 225-9; discussion 229-31 (1998) https://doi.org/10.1111/j.1699-0463.1998.tb01340.x
  6. Facemire, C. F., Gross, T. S. & Guillette, L. J., Jr. Reproductive impairment in the Florida panther: nature or nurture? Environ Health Perspect 103 Suppl 4, 79-86 (1995)
  7. Staples, C. A., Dorn, P. B., Klecka, G. M., O'Block, S. T. & Harris, L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36, 2149-73 (1998) https://doi.org/10.1016/S0045-6535(97)10133-3
  8. Upmeier, A., Degen, G. H., Diel, P., Michna, H. & Bolt, H. M. Toxicokinetics of bisphenol A in female DA/Han rats after a single i.v. and oral administration. Arch Toxicol 74, 431-6 (2000) https://doi.org/10.1007/s002040000144
  9. Ashby, J. & Tinwell, H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect 106, 719-20 (1998) https://doi.org/10.2307/3434259
  10. Nikula, H., Talonpoika, T., Kaleva, M. & Toppari, J. Inhibition of hCG-stimulated steroidogenesis in cultured mouse Leydig tumor cells by bisphenol A and octylphenols. Toxicol Appl Pharmacol 157, 166-73 (1999) https://doi.org/10.1006/taap.1999.8674
  11. Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L. & Feldman, D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132, 2279-86 (1993) https://doi.org/10.1210/en.132.6.2279
  12. Jo, E. H. et al. Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell. J Agric Food Chem 52, 1715-9 (2004) https://doi.org/10.1021/jf035012t
  13. Messina, M. & Barnes, S. The role of soy products in reducing risk of cancer. J Natl Cancer Inst 83, 541-6 (1991) https://doi.org/10.1093/jnci/83.8.541
  14. Breinholt, V. & Larsen, J. C. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay. Chem Res Toxicol 11, 622-9 (1998) https://doi.org/10.1021/tx970170y
  15. Hanna, K., O'Neill, S., Patterson, C. & Lyons-Wall, P. Intake of phytoestrogen-rich foods and associated lifestyle and sociodemographic characteristics in Australian women. Asia Pac J Clin Nutr 13, S73 (2004)
  16. Soto, A. M. & Sonnenschein, C. The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J Steroid Biochem 23, 87-94 (1985) https://doi.org/10.1016/0022-4731(85)90265-1
  17. Soto, A. M. et al. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103 Suppl 7, 113-22(1995)
  18. Lee, Y. S. et al. Requirement of metabolic activation for estrogenic activity of Pueraria mirifica. J Vet Sci 3, 273-7 (2002)
  19. Stroheker, T., Picard, K., Lhuguenot, J. C., Canivenc-Lavier, M. C. & Chagnon, M. C. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol 42, 887-97(2004) https://doi.org/10.1016/j.fct.2004.01.012
  20. Gutendorf, B. & Westendorf, J. Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166, 79-89 (2001) https://doi.org/10.1016/S0300-483X(01)00437-1
  21. Chen, A. C. & Donovan, S. M. Genistein at a concentration present in soy infant formula inhibits Caco-2BBe cell proliferation by causing G2/M cell cycle arrest. J Nutr 134, 1303-8 (2004)
  22. Kang, K. S., Che, J. H. & Lee, Y. S. Lack of adverse effects in the F1 offspring maternally exposed to genistein at human intake dose level. Food Chem Toxicol 40, 43-51 (2002) https://doi.org/10.1016/S0278-6915(01)00091-6
  23. Rivas, A. et al. Estrogenic effect of a series of bisphenol analogues on gene and protein expression in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 82, 45-53 (2002) https://doi.org/10.1016/S0960-0760(02)00146-2
  24. Meerts, I. A. et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ Health Perspect 109, 399-407 (2001) https://doi.org/10.2307/3454900
  25. Legler, J. et al. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48, 55-66 (1999) https://doi.org/10.1093/toxsci/48.1.55
  26. Knight, D. C. & Eden, J. A. A review of the clinical effects of phytoestrogens. Obstet Gynecol 87, 897-904 (1996)
  27. Soto, A. M., Justicia, H., Wray, J. W. & Sonnenschein, C. p-Nonyl-phenol: an estrogenic xenobiotic released from 'modified' polystyrene. Environ Health Perspect 92, 167-73 (1991) https://doi.org/10.2307/3431154
  28. Ramanathan, L. & Gray, W. G. Identification and characterization of a phytoestrogen-specific gene from the MCF-7 human breast cancer cell. Toxicol Appl Pharmacol 191, 107-17 (2003) https://doi.org/10.1016/S0041-008X(03)00221-7