Submerged Horizontal and Vertical Membrane Wave Barrier

  • Kee S.T. (Delt. of Civil Engineering, Seoul National University of Technology)
  • Published : 2005.04.01

Abstract

In the present paper, the hydrodynamic properties of a Rahmen type flexible porous breakwater with dual fixed pontoon system interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at the side edges of dual fixed pontoons, and a submerged horizontal membrane that both ends are hinged at the steel frames mounted pontoons. The dual vertical membranes are extended downward and hinged at bottom steal frame fixed into seabed. The wave blocking and dissipation mechanism and its effects of permeability, Rahmen type membrane and pontoon geometry, pretensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

Keywords

References

  1. Abul Azm, A.G. (1994). 'Wave Diffraction by Double Flexible Breakwaters', Journal of Applied Ocean Research, Vol 16, pp 87-99 https://doi.org/10.1016/0141-1187(94)90005-1
  2. Aoki, S., Liu, H., and Sawaragi, T. (1994). 'Wave Transformation and Wave Forces on Submerged Vertical Membrane', Proc, IntI. Symp. Waves Physical and Numerical Modeling, Vancouver, pp 1287-1296
  3. Cho, I.H., Kee, S.T. and Kim, M.H. (1997). 'The Performance of Dual Flexible Membrane Wave Barrier in Oblique Incident Waves', J. of Applied Ocean Research, Vol 19, No 3, pp 171-182 https://doi.org/10.1016/S0141-1187(97)00017-5
  4. Cho, I.H., Kee, ST. and Kim, M.H. (1998). 'The performance of Dual Flexible Membrane Wave Barrier in Oblique Sea', ASCE J. of Waterways, Port, Coastal and Ocean Engineering, Vol 124, No 1, pp 21-30 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:1(21)
  5. Cho, I.H. and Kim, M.H. (2000). 'Interactions of Horizontal Porous Flexible Membrane with Waves.', ASCE J. of Waterway, Port, Coastal & Ocean Engineering, Vol 126, No 5, pp 245-253 https://doi.org/10.1061/(ASCE)0733-950X(2000)126:5(245)
  6. Chwang, AT. (1983). 'A Porous Wavemaker Theory', J. Fluid Mech., Cambridge, U.K.. Vol 132, pp 395-406 https://doi.org/10.1017/S0022112083001676
  7. Edmond, Y.M. (1998). 'Flexible Dual Membrane Wave Barrier', ASCE J. of Waterway, Port, Coastal and Ocean Engineering, Vol 124, No 5, pp 264-271 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:5(264)
  8. Han, J.O., Kee, S.T., Kim D.S., Cho, I.H., and Park, G.Y. (2003). 'The development of the sea state control technology for Aquapolis', Final Report for the Korea Institute of Construction Technology Research Center Program Grant Number R&F/00 24 01, Vol 3, No 2, pp 55-64
  9. Kee, S.T. and Kim, M.H. (1997). 'Flexible membrane wave barrier. Part 2. Floating/Submerged Buoy Membrane System', ASCE J. of Waterway, Port, Coastal and Ocean Engineering, Vol 123, No 2, pp 82-90 https://doi.org/10.1061/(ASCE)0733-950X(1997)123:2(82)
  10. Kee, S.T. (2001a). 'Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas', Journal of Ocean Engineering and Technology, Vol 15, No 2, pp 11-21
  11. Kee, S.T. (2001b). 'Resonance and Response of the Submerged Dual Buoy/Porous Membrane Breakwaters in Oblique Seas', Journal of Ocean Engineering and Technology Vol 15, No 2, pp 22-33
  12. Kee, S. T. (2002). 'Submerged Membrane Breakwater I: A Rahman Type System Composed of Horizontal and Vertical Membranes', International Journal of Ocean Engineering and Technology, KCORE, Vol 5, No 1, pp 14-21
  13. Kim, M.H. and Kee, S.T. (1996). 'Flexible Membrane Wave Barrier. Part 1. Analytic and Numerical Solutions', ASCE J. of Waterways, Port, Coastal and Ocean Engineering, Vol 122, No 1, pp 46-53 https://doi.org/10.1061/(ASCE)0733-950X(1996)122:1(46)
  14. Kim, M.H., Koo, W.C. and Hong, S.Y. (2000). 'Wave Interactions with 2D structures on/inside porous seabed by a two domain boundary element method', Journal of Applied Ocean research, Vol 22, pp 255-266 https://doi.org/10.1016/S0141-1187(00)00019-5
  15. Lee, J.E. and Chen, C.J. (1990). 'Wave Interaction with Hinged Flexible Breakwater' J. of Hydraulic Research, Vol 28, pp 283-295 https://doi.org/10.1080/00221689009499070
  16. Rahman, M. and Chen. M. (1993). 'Boundary Element Method for Diffraction of Oblique Waves by an Infinite Cylinder', Engineering Analysis with Boundary Elements, Vol 11, pp 17-24 https://doi.org/10.1016/0955-7997(93)90074-U
  17. Sarpkaya T. and Isaacson M. (1981). Mechanics of Wave Forces on Offshore Structures, New York: Van Nostrand Reinhold
  18. Thompson, G.O., Sollitt, C.K, McDougal, W.G. and Bender W.R. (1992). 'Flexible Membrane Wave Barrier', ASCE Conf. Ocean V, College Station, pp 129-148
  19. Wang, K.H. and Ren, X. (1993a). 'An Effective Wave Trapping System', Ocean Engineering, Vol 21, pp 155-178 https://doi.org/10.1016/0029-8018(94)90036-1
  20. Wang, K.H. and Ren, X. (1993b). 'Wave Motion Through Porous Structures', J. Engrg. Mech., ASCE, Vol 120, No 5, pp 989-1008 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(989)
  21. Williams, A.N., Geiger, P.T., and McDougal, W.G. (1992). 'A Submerged Compliant Breakwater' J. of Offshore Mechanics and Arctic Engrg., Vol 114, pp 83-90 https://doi.org/10.1115/1.2919963
  22. Williams, A.N. (1996). 'Floating Membrane Breakwater', J. of Offshore Mechanics and Arctic Engrg., Vol 118, pp 46-51 https://doi.org/10.1115/1.2828800
  23. Williams, A.N. (1996). 'Floating Membrane Breakwater', J. of Offshore Mechanics and Arctic Engrg., Vol 118, pp 46-51 https://doi.org/10.1115/1.2828800
  24. Yu, X. and Chawang, A.T. (1994). 'Water Waves Above a Submerged Porous Plate', J. Engrg. Mech., ASCE, Vol 120, No 5, pp 1270-1280 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1270)