References
- Pronk, J. T., H. Y. Steensma, and J. P. Van Dijken (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12: 1607-1633 https://doi.org/10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
- Liu, L. M., Y. Li, H. Z. Li, and J. Chen (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett. Appl. Microbiol. 39: 199-206 https://doi.org/10.1111/j.1472-765X.2004.01563.x
- Hua, Q. and K. Shimizu (1999) Effect of dissolved oxygen concentration on the intracellular flux distribution for pyruvate fermentation. J. Biotechnol. 65: 135-147 https://doi.org/10.1016/S0168-1656(98)00196-5
- Miyata, R. and T. Yonehara (1996) Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J. Ferment. Bioeng. 82: 475-479 https://doi.org/10.1016/S0922-338X(97)86986-3
- Liu, L. M., Y. Li, G. C. Du, and J. Chen (2002) Progress in biotechnological production of pyruvic acid (In Chinese). Chinese J. Biotechnol. 18: 651-655
- Li, Y., J. Chen, and S. Y. Lun (2001) Efficient pyruvate production by a mulit-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl. Microbiol. Biotechnol. 55: 680-685 https://doi.org/10.1007/s002530100598
- Xu, D. P., C. P. Madrid, M. Rohr, and C. P. Kubcek (1989) Influence of type and concentration of the carbon source on citric acid production by Aspergillus niger. Appl. Microbial. Biotechnol. 30: 553-558 https://doi.org/10.1007/BF00255358
-
Green, L. S. and D. W. Emerich (1997) Bradyrhizobium japonicum does not require
$\alpha$ -ketoglutarate dehygenase for growth on succinate or malate. J. Bacteriol. 179: 194- 201 https://doi.org/10.1128/jb.179.1.194-201.1997 - Antoun, H., L. M. Bordeleau, and R. Sauvageau (1984) Utilization of tricarboxylic acid cycle intermediates and symbiotic efficiency in Rhizobium meliloti. Plant. Soil. 77: 29-38 https://doi.org/10.1007/BF02182809
- Barnett, J. A. and H. L. Kornberg (1960) Utilization by yeast of acids of the tricarboxylic acid cycle. J. Gen. Microbiol. 23: 65-82 https://doi.org/10.2323/jgam.23.65
- Barnett, J. A., R. W. Payne, and D. Yarrow (1990) Yeast Characteristics and Identification. University Press Cambridge, UK
- Corte, R. M., C. Leao, and N. Van U (1989) Transport of L(-)malic acid and other dicarbonxylic acids in the yeast candidas sphaerica. Appl. Microbiol. Biotechnol. 31: 551-555 https://doi.org/10.1007/BF00270793
- Corte, R. M. and C. Leao (1990) Transport of L(-) malic acid and other dicarbonxylic acids in the yeast Hansenula anomala. Appl. Microbiol. Biotechnol. 56: 1109-1113
- Cassio, F. and C. Leao (1993) A comparative study on the transport of L(-)malic acid and other short chain carboxylic acids in the yeast Candida utilis: Evidence for a general organic acid permease. Yeast 9: 743-752 https://doi.org/10.1002/yea.320090708
- Rodriguez, S. and R. J. Thornton (1990) Factors influencing the utilization of L-malate by yeasts. FEMS Microbiol. Lett. 72: 17-22
- Salmon, J. M. (1987) L–malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochem. Biophys. Acta 901: 30-40 https://doi.org/10.1016/0005-2736(87)90253-7
- Lamprecht, W. and F. Heinz (1984) Pyruvate. pp. 570- 577. In: Bergmeyer, H. U. (ed.). Methods of Enzymatic Analysis. VCH, Weinheim, Germany
- Miller, G. (1951) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426- 428 https://doi.org/10.1021/ac60147a030
- Levente, K. and P. K. Christian (2003) Aspergillus niger citric acid accumulation: Do we understand this well working black box? Appl. Microbiol. Biotechn. 61: 189- 196 https://doi.org/10.1007/s00253-002-1201-7
- Palmieri, L., A. Vozza, G. Agrimi, V. De Marco, M. J. Runswick, F. Palmieri, and J. E. Walker (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J. Biol. Chem. 74: 22184-22190 https://doi.org/10.1074/jbc.274.32.22184
- Gombert, A. K., M. Moreira dos Santos, B. Christensen, and J. Nielsen (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441-1451 https://doi.org/10.1128/JB.183.4.1441-1451.2001