CHARACTERIZATIONS BASED ON THE INDEPENDENCE OF THE EXPONENTIAL AND PARETO DISTRIBUTIONS BY RECORD VALUES

  • LEE MIN-YOUNG (Department of Applied Mathematics, Dankook University) ;
  • CHANG SE-KYUNG (Department of Applied Mathematics, Dankook University)
  • Published : 2005.03.01

Abstract

This paper presents characterizations on the independence of the exponential and Pareto distributions by record values. Let ${X_{n},\;n {\ge1}$ be a sequence of independent and identically distributed(i.i.d) random variables with a continuous cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). $Let{\;}Y_{n} = max{X_1, X_2, \ldots, X_n}$ for n \ge 1. We say $X_{j}$ is an upper record value of ${X_{n},{\;}n\ge 1}, if Y_{j} > Y_{j-1}, j > 1$. The indices at which the upper record values occur are given by the record times {u(n)}, n \ge 1, where u(n) = $min{j|j > u(n-1), X_{j} > X_{u(n-1)}, n \ge 2}$ and u(l) = 1. Then F(x) = $1 - e^{-\frac{x}{a}}$, x > 0, ${\sigma} > 0$ if and only if $\frac {X_u(_n)}{X_u(_{n+1})} and X_u(_{n+1}), n \ge 1$, are independent. Also F(x) = $1 - x^{-\theta}, x > 1, {\theta} > 0$ if and only if $\frac {X_u(_{n+1})}{X_u(_n)}{\;}and{\;} X_{u(n)},{\;} n {\ge} 1$, are independent.

Keywords