References
- Box, G. E. P. and Draper, N. R(1987). Empirical Model Building and Response Surfaces, John Wiley & Sons, Inc., New York
- Box, G. E. P. and Hunter, J. S.(1957). Multifactor experimental design for exploring response surfaces, Annals of Mathematical Statistics, Vol. 28, 195-241 https://doi.org/10.1214/aoms/1177707047
- Draper, N. R. and Smith, H.(1981). Applied Regression, 2nd ed., John Wiley & Sons, Inc., New York
- Draper, N. R. and Ying, L. H.(1994). A note on slope rotatability over all directions, Journal of Statistical Planning and Inference, Vol. 41, 113-119 https://doi.org/10.1016/0378-3758(94)90157-0
- Hader, R. J, and Park, S. H.(1978). Slope-rotatable central composite designs, Technometrics, Vol. 20, 413-417 https://doi.org/10.2307/1267641
- Jang, D. H.(2002). A graphical method for evaluating slope-rotatability in axial directions for second order response surface designs, Computational Statistics and Data Analysis, Vol. 39, 343-349 https://doi.org/10.1016/S0167-9473(01)00059-7
- Jang, D. H. and Park, S. H.(1993). A measure and a graphical method for evaluating slope rotatability in response surface designs, Communications in Statistics Theory and Methods, Vol. 22, 1849-1863 https://doi.org/10.1080/03610929308831120
- Kim, H. J., Um, Y. H. and Khuri, A.(1996). Quantile plots of the average slope variance for response surface designs, Communications in Statistics - Simulations and Computation, Vol. 25, 995-1014 https://doi.org/10.1080/03610919608813355
- Park, S. H.(1987). A class of multifactor designs for estimating the slope of response surface, Technometrics, Vol. .29, 449-453 https://doi.org/10.2307/1269456
- Park, S. H. and Kim, H. J.(1992). A measure of slope-rotatability for second order response surface experimental designs, Joumal of Applied Statistics, Vol. 19, 391-404 https://doi.org/10.1080/02664769200000035
- Roquemore, K. G.(1976). Hybrid designs for quadratic response surfaces, Technometrics, Vol. 18, 419-423 https://doi.org/10.2307/1268657
- Victorbabu, B. V. and Narasimham, V. L.(1991). Construction of second order slope rotatable designs through balanced incomplete block designs, Communications in Statistics - Theory and Methods, Vol. 28, 2467-2478
- Ying, L. H., Pukelsheim, F. and Draper, N. R.(1995a). Slope rotatability over all directions designs, Journal of Applied Statistics, Vol. 22, 331-341
-
Ying, L. H., Pukelsheim, F. and Draper, N. R.(1995b). Slope rotatability over all directions designs for
$k{\geq}4$ , Journal of Applied Statistics, Vol. 22, 343-354