DOI QR코드

DOI QR Code

The Weight Function in the Bounded Influence Regression Quantile Estimator for the AR(1) Model with Additive Outliers

  • 발행 : 2005.04.01

초록

In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(l) model with additive outliers. In order to down-weight the outliers of X -axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function. Thus, the use of the Tukey's weight function is recommended in the BIRQ estimator for our model.

키워드

참고문헌

  1. 한상문, 정병철 (2004). AR(1) 모형의 모수에 대한 L-추정법, '응용통계연구' Accepted
  2. De Jongh, P.J. and De Wet T. (1985). Trimmed Mean and Bounded Influence Estimators for the Parameters of the AR(1) Process, Communications in Statistics -Theory and Methods, Vol. 14, 1361-1375 https://doi.org/10.1080/03610928508828981
  3. De Jongh, P.J., De Wet T. and Welsh, A.H. (1988). Mallows-Type Bounded-Influence -Regression Trimmed Means, Journal of the American Statistical Association, Vol. 83, 805-810 https://doi.org/10.2307/2289310
  4. Denby, L. and Martin, R.D. (1979). Robust Estimation of the First-Order Autoregressive Parameter, Journal of the American Statistical Association, Vol. 74, 140-146 https://doi.org/10.2307/2286743
  5. Fox, A.J. (1972). Outliers in Time Series, Journal of the Royal Statistical Society, Series B, Vol. 34, 350-363
  6. Guo, J-H. (2000). Robust Estimation for the Coefficient if a First Order Autoregressive Process, Communications in Statistics - Theory and Methods, Vol. 29, 55-66 https://doi.org/10.1080/03610920008832468
  7. Haddad, J.N. (2000). On Robust Estimation in the First Order Autoregressive Processes, Communications in Statistics - Theory and Methods, Vol. 29, 45-54 https://doi.org/10.1080/03610920008832467
  8. Hogg, R.V., Bril, G.K., Han, S.M. and Yuh, L. (1988). An Argument for Adaptive Robust Estimation, Probability and Statistics, Essay in Honor of Graybill, F.A., North Holland, 135-148
  9. Holland, P.W. and Welsh, R.E. (1977). Robust Regression using Iteratively Reweighted Least Squares, Communications in Statistics - Theory and Methods, Vol. 6, 813-827 https://doi.org/10.1080/03610927708827533
  10. Koenker, R. and Bassett, G. (1978). Regression Quantiles, Econometrica, Vol. 46, 33-50 https://doi.org/10.2307/1913643
  11. Mallows, C.L. (1973). Influence Functions, Unpublished paper presented at a corference on robust regression held at Cambridge, Mass., and sponsored by the National Bureau of Economic Research
  12. Rousseeu, P.J. and Leory, A.M. (1987). Robust Regression and Outlier Detection, New York, Wiley
  13. Rupport, D. and Carroll, R. (1980). Trimmed Least Squares Estimation in the Linear Model, Journal of the American Statistical Association, Vol. 75, 828-838 https://doi.org/10.2307/2287169