참고문헌
- Basu, A. and Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: efficiency, distributions and robustness, Annals of the Institute of Statistical Mathematics, Vol. 46, 683-705 https://doi.org/10.1007/BF00773476
- Basu, A. and Sarkar, S. (1994a). The Trade-Off Between Robustness and Efficiency and The Effect of Model Smoothing in Minimum Disparity inference, Journal of Statistical Computation and Simulation, Vol. 50, 173-185 https://doi.org/10.1080/00949659408811609
- Basu, A. and Sarkar, S. (1994b). Minimum disparity estimation in the errors-in-variables model, Statistics & Probability Letter, Vol. 20, 69-73 https://doi.org/10.1016/0167-7152(94)90236-4
- Basu, A. Sarkar, S. and Vidyashankar, A. N. (1997). Minimum negative exponential disparity estimation in parametric models, Journal of Statistical Planning and Irference, Vol. 58, 349-370 https://doi.org/10.1016/S0378-3758(96)00078-X
- Beran, R. J. (1977). Minimum Hellinger distance estimates for parametric models, Annals of Statistics, Vol. 5, 445-463 https://doi.org/10.1214/aos/1176343842
- Cressie, N. and Read, T. (1984). Multinomial Goodness-of-fit Tests, Journal of the Royal Statistical Society B, Vol. 46, No.3, 440-464
- Csiszar, I. (1963). Eine informations theoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Publ. Math Inst. Hungar. Acad Sci., Vol. 3, 85-107
-
Devroye, L. and Gyorfi, L. (1985). Nonparametric Density Estimation: The
$L_1$ View, John Wiley, New York - Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Irfluence Functions, John Wiley, New York
- Jeong, D. B. and Sarkar, S. (2001). Negative Exponential Disparity Based Deviance and Goodness-of-fit Tests for Continuous Models: Distribution, Efficiency and Robustness, Journal of the Korean Statistical Society, Vol. 30: 1, 41-61
- Jeong, D. B. and Sarkar, S. (2000). Negative exponential disparity family based goodness-of-fit tests for multinomial models. Journal of Statistical Computation and Simulation, Vol. 65, 43-61 https://doi.org/10.1080/00949650008811989
- Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods, Annals of Statistics, Vol. 22, 1081-1114 https://doi.org/10.1214/aos/1176325512
- Parzen, E. (1962), On estimation of a probability density function and its mode, Annals of Mathematical Statistics, Vol. 33, 1065-1076 https://doi.org/10.1214/aoms/1177704472
- Sarkar, S., Basu, A. and Shin, D. W. (1996). Small sample comparisons for the blended weight chi-square goodness-of-fit test statistics. Communications in Statistics, Theory and Method, Vol. 25, 211-226 https://doi.org/10.1080/03610929608831689
- Simpson, D. G. (1987). Minimum Hellinger distance estimation for the analysis of count data, Journal of the American Statistical Association, Vol. 82, 802-807 https://doi.org/10.2307/2288789
- Simpson, D. G. (1989). Hellinger Deviance Tests: Efficiency, Breakdown Points, and Examples, Journal of the American Statistical Association, Vol. 84, 107-113 https://doi.org/10.2307/2289852
- Stather, C. R. (1981). Robust Statistical Inference using Hellinger Distance Methods, Unpublished Ph. D. Dissertation, La Trobe University, Melbourne, Australia
- Tamura, R. N. and Boos, D. D. (1986). Minimum Hellinger Distance Estimation for Multivariate Location and Covariance, Journal of the American Statistical Association, Vol. 81, 223-229 https://doi.org/10.2307/2287994